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Abstract: Stem characteristics of plants are of great importance to both ecology study and 

forest management. Terrestrial laser scanning (TLS) may provide an effective way to 

characterize the fine-scale structures of vegetation. However, clumping plants, dense foliage 

and thin structure could intensify the shadowing effect and pose a series of problems in 

identifying stems, distinguishing neighboring stems, and merging disconnected stem parts 

in point clouds. This paper presents a new method to automatically detect stems in dense and 

homogeneous forest using single-scan TLS data. Stem points are first identified with a  

two-scale classification method. Then a clustering approach is used to group the candidate 

stem points. Finally, a direction-growing algorithm based on a simple stem curve model is 

applied to merge stem points. Field experiments were carried out in two different bamboo 

plots with a stem density of about 7500 stems/ha. Overall accuracy of the stem detection is 

88% and the quality of detected stems is mainly affected by the shadowing effect. Results 

indicate that the proposed method is feasible and effective in detection of bamboo stems 

using TLS data, and can be applied to other species of single-stem plants in dense forests.  
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1. Introduction 

A stem or culm refers to the main structural axis of a plant above ground. It transports fluids, supports 

the whole plant and stores the energy. Stems are of vital importance to ecology study and forest 

management. Diameter at the breast height (DBH) and plant density are key parameters for estimating 

biomass productivity and carbon storage [1–3]. In forestry, stem mapping and stem curve measurement 

are necessary for monitoring forest growth and managing forest harvest [4,5]. However, the traditional 

survey of vegetation characteristics (e.g., DBH, plant density) is usually done by on-site manual 

measurement, which is time consuming, labor intensive, and often subject toerrors associated with 

manual works [5–7]. Moreover, it is usually difficult to gather some stem properties (e.g., diameters at 

different heights, stem curvature) using the manual survey, unless destructive methods are employed. 

Some automatic, accurate, and efficient approaches to obtain the properties of stems are needed. In recent 

years, terrestrial LiDAR (Light Detection And Ranging), also known as Terrestrial Laser Scanning (TLS) 

has been widely used in constructing forest inventory, because it can record high density three dimensional 

(3-D) point clouds and thus obtain high resolution structural information from forests [8–10]. 

Detecting stems from point clouds has been discussed in many previous studies [4,8,11–16].  

Maas et al. [14] first extracted horizontal point slices above ground, then a clustering and circle fitting 

procedure was conducted to determine the existence of stem points. The stem detection rate was about 

97% in the test plots with a stem density less than 600 stem/ha. Similarly, a cylinder/circle fitting method 

has been used to identify the stem positions in some other studies (e.g., [13,15,16]). These methods 

usually require the terrain surface information that is often difficult to obtain, especially in heterogeneous 

forest with rough terrain and low vegetation cover. Liang et al. [8] proposed a two-step procedure for 

stem mapping in a denser forest (plot density ≈1500 stem/ha). They first identified the points with flatten 

or vertical shapes as the candidate trunk returns, then used a robust cylinder fitting and trunk following 

algorithm to verify the location of stems. The correction rate of stem mapping using the single-scan TLS 

was 73%. This method was then applied in stem detection in a forest plot (plot density <500 stem/ha) 

using mobile laser scanning (MLS) and 87.5% of all the reference stems were mapped correctly [11]. 

Range imagery [17] and full-waveform [9] data were also utilized in stem detection, but these data need 

special instruments that are not widely used nowadays and more pre-processes are always needed. 

MLS has also been applied to stem detection in urban area. Hetti Arachchige [18] extracted the 

candidate stem subsets based on the shape indices and geometric features. Roadside stems were detected 

and connected using an orientation-based layer wise searching algorithm. About 90% of reference trees 

were correctly detected. Lehtomäki et al. [19] proposed an algorithm to detect the pole-like objects from 

mobile laser scanning point clouds. Their algorithm has four steps: segmentation, clustering, merging 

and classification, and was able to identify 77.7% of 148 poles (e.g., lamp, tree trunk and traffic sign 

pole), but no identification of stems between stems and other pole-like objects was carried out [19]. The 

spacing between roadside trees in urban areas is usually regular and neighboring trees are not close 
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together. In addition, relatively flat ground in urban areas makes stem detection quite different from that 

in forestry regions. 

In summary, most of previous studies of stem detection focused on forests with some typical tree 

densities (usually less than 1500 stem/ha) and trees in the studied plots (e.g., pine, spruce, birch,  

and 2 Douglas-fir forest) usually had a mean DBH value >10 cm. However, in a forest with a high stem 

density, e.g., more than 5000 stem/ha, the shadowing effect could become more significant. A single 

stem may be disconnected or partly missed in the point clouds. Consequently, the cylinder (or circle) 

fitting and trunk following processes will be affected directly. Moreover, clumping plants, thin and 

bended structures can pose new challenges to separate stems from neighboring stems, which seldom 

happen in low-density forests. Therefore, a study of the effective stem detection in high-dense forests 

using TLS data is deserved. 

In this paper, we present a novel and feasible algorithm to detect stems in high-dense forests using 

TLS point clouds. To avoid the time-consuming registration process of point clouds as well as to improve 

the feasibility of field scanning, we use single-scan measurements. The method is tested in a dense 

bamboo area (about 7500 stem/ha). Unlike some previous studies, our method does not require 

information about the terrain surface and no circle or cylinder fitting is needed. Furthermore, the 

algorithm contains a new and simple method to separate stems from neighboring stems, and this problem 

has not been addressed in previous studies. The arrangement of this paper is as follows. Section 2 

describes study area and data. Section 3 introduces the method. Section 4 presents experiments and 

results. Discussion is in Section 5. Section 6 is a summary. 

2. Study Area and Data 

The study area is a mature bamboo forest located in Sichuan Giant Panda Sanctuaries (30.06° N, 

103.01° E), China. Bamboo belongs to the grass family Poaceae and grows on all continents, except 

Antarctica and usually has a high population density in both wildwoods and plantations [20–22].  

The bamboo stem density of the study area is approximately 7500 stem/ha. Young bamboos (height 

below 3 m), weeds and fallen bamboos were also found on the ground. The single-scan LiDAR dataset 

was collected in November of 2013 using a Leica ScanStationC10 (Leica Geosystems Ltd., Heerbrugg, 

Switzerland). The instrument transmits a wave of 532 nm (green light) and accuracy of the distance 

measurement at a distance of 50 m from the target is about 4 mm. The beam divergence is 0.24 mrad and 

the spot size is 4.5 mm at 50 m distance. A high point density is required to record the structure 

information. Rough point spacing was about 3 mm at a 10 m distance. 

The scanner was mounted on a tripod. Because the clear space for TLS placement was limited by the 

dense canopy, we found it was quite safe and convenient to setup the scanner adjacent to the plots instead 

of within them. The original measurement range was wide and the data were collected near the road, 

there were some no-vegetation objects in the original point clouds, such as cars, power towers and 

buildings. Two approximate rectangle plots (Plot A and Plot B) were carefully selected and clipped from 

the original data using the Cyclone™ SCAN software (Leica Ltd., Heerbrugg, Switzerland ). As this 

study mainly focuses on stem detection, DBH or tree height is not requisite in both detection and 

validation. Therefore, we only measured the DBH and height of some representative bamboos in the 

field. Actually, only five sampled bamboos are located in two plots. According to the field 
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measurements, the heights of the sampled species varied from 6 m to 13 m and their DBHs ranged from 

3 cm to 8 cm. 

Figure 1 shows the diagram of two plots. Plot A is about 100 m2 and the distance between the nearest 

bamboo and the scanner was about 4.0 m. Plot B covers a ground area of about 120 m2 and the distance 

between the front side and the LiDAR was about 5.0 m. The terrain surfaces in both plots are uneven 

and common in natural forests. There were 82 reference stems in Plot A and 84 in Plot B. The number 

of reference plants and relative stem map was recorded manually using Terrascan™ software (Terrasolid 

Ltd., Helsinki, Finland). To avoid false statistics in 3-D point clouds, we divided the plots into small 

sections; then the number and relative positions were recorded successively. In terms of the undergrowth, 

stem density and topographic relief, Plot A and Plot B are quite typical. Although the areas of two plots 

are smaller than those in previous studies, the number of reference stems is sufficient compared to 

relevant studies [5,8,14,18]. 

 

Figure 1. Diagram of two plots. The side near the LiDAR position is defined as front and its 

opposite is defined as back. Circles indicate relative stem locations. 

3. Methods 

The proposed method contains three phases (Figure 2). First, candidate stem points are identified 

from original point clouds through classifying the points at two scales (dashed boxes in Figure 2).  

Then, the stem points are grouped using a clustering algorithm. These clusters are recognized as stem 

sections. Finally, a simple single-stem model is used to merge the clusters and separate stems from their 

neighboring stems. 

 

Figure 2. Phases of stem detection algorithm.  
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3.1. Two-Scale Classification 

Taking advantage of points’ geometric features, we proposed a two-scale classification method for 

stem detection in this section. In the following, we first analyzed multi-scale geometric features in 

vegetation point clouds and discussed the optimal radius selection subsequently. Finally, we introduced 

a stem recognition method using two-scale features. 

3.1.1. Multi-Scale Features of Vegetation Point Clouds 

Generally, geometric features can be identified through analyzing the spatial distribution of local 

points. Points in the spherical neighborhood centered at a laser point form a local point set. Principal 

component analysis (PCA) is performed on each set to obtain three eigenvalues   

( ) and three associated eigenvectors  representing three orthotropic axes of the 

spatial distribution of local points [23]. The axial lengths are  ( ). Three geometric 

features are defined to represent the shape of local point set distribution (Equation (1)). Each point is 

classified as linear ( ), planar ( ) or volumetric ( ) according to the maximum value among , 

, and  [24]. 
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The radius of neighborhood area defines the feature scale. The spatial distribution of local points set 

varies with scales even for the same object. To illustrate the multi-scale performance, we manually 

extracted some point samples from original data in Section 2. Table 1 shows classification results of 

sampled stem points as the radius increased from 1 cm to 12 cm. These red/blue/green colors are 

corresponding to linear/planar/volumetric classification results of each point. This sample contains  

3080 points and the estimated radius is about 4 cm. The salience feature of these points changed from 

linear (r = 1 cm, 52.24%) to planar (r = 4 cm, 96.43%) and became linear (r = 12 cm, 100%) again. 

Similarly, salience features of other objects (e.g., branch, foliage, grass, and ground) in forest scenes 

also change with scales. Table 2 summarizes the classification results of other samples when the radiuses 

are set as 4 and 12 cm and associated image widths and heights. Compared with stem samples listed in 

Table 1, these objects show different properties. Branch points always exhibit “linear” due to the thin 

structures. The volumetric distribution is the salience feature of foliage samples at both scales. The grass 

sample shows linear or volumetric distribution at a small-scale r (e.g., r = 4 cm) and becomes more 

volumetric at a bigger scale (e.g., r = 12 cm). As for the ground points, they are mainly classified as 

planar at both scales. 

In a nutshell, different objects have variable percentages of class types (i.e., linear, planar, and 

volumetric), which change differently with scales. These multi-scale features are useful for recognizing 

objects, which had been studied in some applications [24,25]. However, since vegetation objects  

(e.g., stem, branch, grass, and shrub) are quite irregular and usually clumping, multi-scale features were 

seldom used in processing vegetation point clouds, especially in natural forest. 
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Table 1. Percentages of classified features in sampled stem data. 

Point clouds of 

stem  

(Height ≈ 80 cm,  

Radius ≈ 4 cm) 

            

radius (cm) 1 2 3 4 5 6 7 8 9 10 11 12 

linear (%) 52.24 6.62 4.06 2.82 16.23 88.44 91.13 93.47 95.91 98.41 99.94 100 

planar (%) 47.11 75.32 95.55 96.43 82.24 11.23 8.86 6.54 4.09 1.59 0.06 0 

Volumetric (%) 0.65 18.06 0.39 0.75 1.43 0.33 0.01 0 0 0 0 0 

Table 2. Percentages of classified features in other samples. 

 Branch Foliage Grass Ground 

point number 119 67,537 5996 7287 

classified points 

        

dimensions (m) 0.1/0.5 1.5/2.3 0.8/1.8 0.6/1.2 

radius (cm) 4 12 4 12 4 12 4 12 

linear (%) 100 100 10.50 7.69 49.87 14.28 6.24 2.83 

planar (%) 0 0 11.49 13.27 16.84 5.85 84.29 97.17 

volumetric (%) 0 0 78.01 79.04 33.29 79.87 9.47 0 

3.1.2. Optimal Radius Selection 

In many applications, features of points were usually calculated within a sphere with a fixed  

radius [8,11,15,23]. However, suitable neighborhood for each point varies. For instance, different stems 

may have diverse DBHs, and the radius of a single stem usually decreases with height. Therefore, an 

adaptive optimal radius selection method is necessary in the two-scale classification. 

Demantké et al. [26] developed a radius selection criteria to identify the optimal radius of each point. 

In this method, an entropy function  is defined as 

)ln()ln()ln( 332211 DDDDDD aaaaaaE   (2) 

A radius interval  that contains candidate optimal radius is predefined.  values with radiuses 

in the given interval for each point are computed. Finally, for each point, the radius with minimal  is 

selected as the optimal radius. The pseudo code of the scale determination is presented in Algorithm 1. 

According to Equation (2), a smaller  value indicates that one of the feature values (i.e., , , ) 

is much greater than the other two [26], which can be used as an index to distinguish geometric feature. 
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Algorithm 1. Scale selection 

Input: Point clouds ; Given interval ],[ ul rr  

Output: radius set  

for every point  do 

 for every radius  do 

  Find the neighboring points set  of  with jr . 

Calculate geometric features according to Equation (1). 

Calculate and record the entropy function  according to Equation (2). 

 end for 

 The radius  with minimal  is selected as the optimal radius for ip . 

Add  to . 

end for 

3.1.3. Candidate Stem Points Recognition 

As illustrated in Section 3.1.1, stem points can be labeled as “planar” at a small scale (e.g., 4 cm) and 

show a linear distribution at a big scale (e.g., 12 cm). However, other types of objects (e.g., branch, 

foliage, grass, and ground) in forest scenes show different multi-scale properties. Therefore, combining 

features at different scales can be helpful in stem recognition. 

In this study, a two-scale classification method is proposed to recognize candidate stem points from 

raw point clouds. Two intervals,  and  , corresponding to two 

scales, are introduced to find optimal radiuses for each point at different scales. A small increment of 

radius will improve the precision, but also increase the calculation load. It was set to 0.5 cm in both 

intervals to keep a balance between precision and computing time according to tests. By using the 

Algorithm 1, the optimal radiuses for each point at each scale are acquired. Then points will be classified 

into linear, planar or volumetric according to Equation (1) at both scales. Finally, stem points can be 

recognized by combining two-scale features. The main steps of classification are listed in Algorithm 2. 

The ranges of two intervals can be set according to the radius of trees. In our method, the lower bound  

( ) of the first interval should be larger than the point spacing while its upper bound ( ) should be 

smaller than the max stem radius in the scene. As for the second interval, its lower bound  

( ) should be no less than . Because a wider range of interval will increase the unnecessary 

computation, it is suitable to set the upper bound ( ) around double the value of  according to trials 

Unlike the previous methods in which multi-scale features are computed using all original points,  

we compute second scale features using only a subset of original points. As in Algorithm 2, only the 

“planar” points remain after the first scale classification. Feature calculation at second scale is performed 

on this subset only. Specifically, to keep the geometry significance, if the number of neighboring points 

is less than a threshold (e.g., 5 in this study), the given radius will not be selected as the optimal radius. 

If there is no optimal radius in the intervals, then the point will be classified as “volumetric”. 

  

P

R

Ppi 

],[ ulj rrr 

js ip

jE

minr minE

minr R

],[ 21 rr ],[ 43 rr )( 4321 rrrr 

1r 2r

3r 2r

4r 3r



Forests 2015, 6 3930 

 

 

Algorithm 2. Two-scale classification 

Input: Point clouds ; Given intervals  and  

Output: Candidate stem point set  

 (1) Run Algorithm 1 with interval , get optimal radiuses for all points. 

 (2) Classify each point into linear, planar or volumetric according to Equation (1). 

 (3) Only “planar” points remain 

 (4) Run Algorithm 1 with interval , get optimal radiuses for remaining points. 

 (5) Classify these points into linear, planar or volumetric according to Equation (1). 

 (6) These “linear” points are recognized as candidate stem points  

3.2. Clustering 

Stem points will remain after the two-scale classification while most of points from foliage, grass, 

ground and branch are excluded. Due to the ambiguity of eigenvalue-based spatial distribution analysis 

and noise, there are still a few non-stem points (mainly foliage points) left. Nevertheless, after the  

two-scale classifications the density of residual non-stem points is much less than stem points, and 

groups of non-stem points are disconnected and dispersed. These facts are useful for verifying the 

detected stem points. 

The Euclidean clustering algorithm is introduced to exclude non-stem points and create stem groups. 

Any two points with their spacing less than  will be considered as subordinates to the same cluster, 

otherwise they belong to two different clusters. Update the clusters until all points are assigned to a 

certain cluster. The number of points in each cluster is used to name cluster size, which is determined 

by the point spacing. Generally, stem clusters are much bigger than the residual non-stem clusters. 

Therefore, clusters with their size less than  are excluded from the candidate stem clusters.  can 

be specified according to the original point density.  is the only parameter needed to be set in 

clustering and has a major influence on the cluster size. The aim of clustering is to group the “planar” 

points and therefore  should be selected according to “planar” points’ density. Generally speaking, 

neighbors within the optimal radius of one point are considered to have similar properties. Therefore, in 

this method, the mean optimal radius of “planar” points at the first scale classification is used as  

 adaptively. 

The distance-growing method, i.e., Euclidean clustering algorithm, takes advantage of the point 

density change of no-stem objects after two-scale classification. If other methods are applied to  

segment stem sections, for example, RANSAC (RANdom SAmple Consensus) for cylindrical model 

detection, we have to take the stem diameter variation into account, because the bamboo stem is thin and 

long, and a cylindrical model may not represent the real stem very well due to the curved structure of 

bamboo stem. In addition, it is difficult to determine the end conditions for cylinder extraction methods, 

as the number of stem sections in point clouds is unknown and points from other objects may also be 

detected as stem if a big distance threshold (i.e., point distance to model) of RANSAC is used. By way 

of contrast, the distance-growing method is simple but feasible and need less computation time. For the 

record, if there exits many noise points in original point clouds, the distance-growing method may fail 

in section detection. However, due to the high accuracy of TLS, this situation rarely happens. 
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3.3. Merging Stem Clusters 

After the clustering step, stem points are grouped. The next step is to group the stem points that  

come from the same plant. In fact, stem points are usually divided into several clusters due to the 

shadowing effect caused by dense foliage, crowded stems, and the limitation of the single scan method. 

Separating stems from neighboring stems in a high density forest is a difficult task that has not  

been studied in previous studies [27]. Merging clusters simply by analyzing the overlapping and 

orientation of neighboring clusters might not be effective to handle bended stems [19]. In this study,  

a direction-growing method to merge detached stem clusters is proposed and only one distance threshold 

is needed in this method. 

First, we assume that a stem can be approximately represented by a quadratic curve in a  

three-dimensional coordinate given in Equation (3). 
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In Equation (3),  and  coordinates of the stem are functions of height z, and z is the plant height 

to be determined. Figure 3a shows a typical stem curve in a rectangular coordinate system.  is the 

local 2D coordinate system and  points the direction of stem curve projection (line ).  can be in 

any direction in the  plane. Equation (4) shows the expression  (  are parameters) of line 

ef, which is the projection of a stem on  plane, and it also can be expressed as a function of x and y 

(Equation (5)) while the relationship between x and y is linear (Equation (6)). If we eliminate y in 

Equation (6) by substituting Equation (5), line  can be expressed as Equation (7). Then, the left hand 

side term of Equation (4) is substituted by the right hand side term of Equation (7). Finally, the 

relationship between x and z can be expressed as Equation (8). Furthermore,  can be expressed in 

the same way like )(zfx . 

 

Figure 3. (a) Simplified stem model; and (b) direction-growing example. 
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Note that Equation (6) is usually in the form of , in which  is slope and  is intercept. 

However, when a stem cluster is under calculating, we transform the horizontal coordinate to the origin 

by subtracting the minimal x and y (e.g., x and y of point e in Figure 3a), then change back later by an 

inverse transform. Thus,  is very close to zero after coordinate transformation and can be dropped 

from Equation (6). 

The direction vector  of stem (e.g., red line in Figure 3a) can be expressed as the 

derivative of Equation (3). It forms a simple stem model as shown in Equation (9).  and are 

direction parameters. 
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The main idea of the direction–growing algorithm is that if the position of one cluster can be predicted 

by another cluster, these two clusters are from the same plant. In calculating the directions, for a pair of 

stem clusters, parameters in Equation (9) can be solved using their orientation vectors and cluster’s mean 

height z. The direction vector of a cluster can be estimated by PCA using all its points approximately. 

The eigenvector corresponding to the maximum eigenvalue is considered as orientation of the cluster. 

Then in the “growing” phase, the highest point in lower cluster is selected as the seed point. With the 

height increasing, update the coordinate of the seed point according to Equation (10) until the height is 

no less than the bottom of the higher cluster. A small height increment will improve the accuracy and  

1 cm for the growing process is accurately. Only if the distance between the seed and bottom points of 

the higher cluster is smaller than threshold , two clusters are considered from the same stem. Figure 

3b shows an example of the direction–growing algorithm. Two higher stem clusters have the same 

direction vector and height, but after the lower cluster grows up, the left cluster will be merged with the 

lower one according to the distance comparison. This merging process is summarized in Algorithm 3. 
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Algorithm 3. Merging of stem clusters 

Input: points clusters  

Output: stems list  

Initialize an empty list of  

 for every cluster  do 

  for every stem  do 

   find the cluster  which is nearest to  

calculate the direction vectors of  and  

   solve parameters of linear models in Equation (9) using two direction vectors 

   growing of the seed point according to Equation (10) until it meets the higher cluster 

   if distance ( , ) <  then 

   add  to ; break; 

   end if 

  end for 

  if is not added to any  then 

  create a new stem and add it to  

  end if 

 end for 

4. Experiments and Results 

Four parameters were defined for both plots. Two intervals in centimeter units were set as [1,4]   

and [9,17] corresponding to two scales in classification. , a parameter used in clustering, was set as 

50, which means only a cluster’s bigger than 50 will be considered as a stem cluster. Nc = 50 was 

determined based on tests in the plots and density of the raw points. The last parameter  depends 

on the minimum distance between neighboring stems and was set to 8 cm in two plots. Additionally, 

fallen bamboos on the ground can also be detected in two plots. Thus, any merged stem with its height, 

i.e., maximum height minus minimum height in the group, less than 30 cm will be excluded. 

During the experiment, the number of points decreased during different phases. Table 3 lists the total 

number of points after different phases. As the table shows, the downward trend of points in two plots 

is similar. In both plots, nearly 75% of original points were removed as no-stem points after two-scale 

classification. The number of stem points after stem merging account for less than 10% of the original 

points cloud. 

Table 3. Points counts after different phases. 

 Original First Scale Classified Second Scale Classified Clustering Merging 

Plot A 3,384,528 1,095,781 551,077 340,133 329,417 

Plot B 3,050,403 995,032 494,154 283,083 280,335 

All the algorithms in the experiment were implemented in C++. The experiment runs on a computer 

with 4-GB RAM and an Intel Core i7-2600 CPU at 3.4 GHZ. In Plot A, it takes about 5.8 min to classify 

points in the first scale and another 4.9 min to finish the second scale classification. Similarly, it takes 
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approximately 8.7 min to complete the two-scale classification phases in Plot B. The time used in 

clustering and merging phases in Plot A is about 7.6 s and 3.8 s, respectively. In addition, in Plot B, it 

takes about 5.3 s and 3.2 s to finish the last two steps. It follows that most of the computing time is spent 

on feature calculation. However, the optimal radius search for each point at the same scale is 

parallelizable and hence the algorithms can be implemented using parallelization framework to reduce 

the computation time. 

To assess the accuracy, the completeness is defined as follow: 

R

T
ssCompletene   (11) 

True stem (T) indicates the number of correctly detected stems. Reference stem (R) is the number of 

stems manually counted in the original data (in Section 2). The results overlapping in the second column 

of Figure 4 made the validation process easier. There are two types of error. Type I error relates to 

omission and is the number of stems that are not recognized. Type II error, or commission, means stems 

are falsely merged. For example, two neighboring stems were recognized as one or a stem contains some 

clusters from others. Table 4 lists the accuracy assessments for both plots. Among 157 detected targets, 

11 of them belong to Type II error. Among 11 falsely detected stems, six stems contained some clusters 

from others, four consisted of two stems, and one contained three neighboring stems. Finally, the 

completeness is 88%. 

 

Figure 4. Original point clouds, detected stems and top view of stem detection results.  
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Table 4. Results and assessments of stem detection. 

 
Reference 

Bamboos 

Detected 

Culms 

Type I 

Error 

Type II 

Error 

True 

Culms 
Completeness 

A 82 78 1 5 73 89% 

B 84 79 2 6 73 86.9% 

Total 166 157 3 11 146 88.0% 

Figure 4 shows the original point clouds and stem detection results in both plots. Images in the first 

row and second row of Figure 4 are very similar in size. Colors of detected stems are selected randomly 

to distinguish different ones and the original data (in grey) are overlain by detected results. The column 

of Figure 4 shows the detected stems and errors in the x–y plane in both plots. According to Figure 4, it 

is evident that most of the stems are well detected. 

5. Discussion 

5.1. Stem Points Identification and Type I Error 

In this paper, the stem point clouds are first recognized using two scale features. Unlike previous 

scale-based classification methods, the number of points that are involved in feature calculation 

decreases with scales. Only a subset of original point clouds will be reserved for the next scale 

classification (Section 3.1.2). Benefits of this method are clear: (i) Points from branches will be excluded 

after the first scale classification, and will improve the robustness of feature classification at the second 

scale. (ii) The density of non-stem points drops quickly which increases the difference between stem and 

no-stem points. (iii) The two-scale classification algorithm can reduce data volume as well as improve 

the computation efficiency. Figure 5 presents an example of the two-scale classification. A bamboo with 

DBH about 8 cm was selected manually from original data. At the first scale, most of the points of stem 

and ground are labeled as “planar”. Branches connected with stems are classified as “linear” and were 

deleted after the first scale analysis. Significantly, the “linear” points on the ground in Figure 5 are from 

fallen bamboos. 

In theory, the two-scale stem classification can be applied to stems with varies diameters. As it  

seems that two-scale properties have little relationship to stem diameters, i.e., stem points can usually 

be labeled as “planar” at certain scale and “linear” at a larger one. However, stems with very small 

diameter (e.g., 2 cm in this study) will show little “planar” distribution due to lack of enough points at 

small scale. Furthermore, for stems with large diameters (e.g., bigger than 20 cm), the radius-based point 

feature calculation and optimal radius search will take massive computation if the second interval  

( ) becomes much bigger. In fact, if stem diameters are much bigger, the stem density in forests 

as well as the shadowing effect may reduce. Therefore, classical cylinder fitting methods [8,13,15,16] 

may be feasible and fast for stem detection in these circumstances. 

Besides the point number reduction in the scale calculation, an automatic radius selection method is 

used to specify the optimal radius for each point at each scale. This entropy function-based method has 

been tested on various data sets with different stem densities and performed well. Details of this method 

can be found in many studies (e.g., [26,28,29]). 

],[ 43 rr
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Figure 5. An example of two-scale classification: (a) classification results at the first scale; 

and (b) classification results at the second scale. 

Type I error is the number of stems that can be found in original data, but totally missed in the stem 

detection results. It happens during the two-scale classification and clustering. This is mainly caused by 

two reasons. First, the missed bamboos are all found near the back of plots where the shadowing effect 

caused by foreground objects (e.g., stem, branch and dense foliage) is most prominent, and therefore 

stem points from these bamboos are tend to be separated into small pieces. Second, the point density 

decreases with the distance from the scanner. So point numbers in clusters from rear stems are usually 

smaller than those from front stems. Consequently, small pieces of stems may be identified as non-stem 

classes and removed at the classification or clustering phases. However, only three bamboos are totally 

missed in the tests (Figure 4). This indicates that the proposed stem identification method is feasible  

and effective. 

5.2. Clusters Merging and Type II Error 

In the final phase, we proposed a clusters merging algorithm based on the geometric properties of stem. 

Compared to other curve or cylinder fitting methods which handle point clouds, such as RANSAC, 

this direction-growing method saves computation time because its processing unit is cluster rather than 

single point. Moreover, in those point-based methods, if two clusters belong to the same stem but differ 

greatly in size, an un-weighted fitting method may overlook the smaller cluster and cause errors. In 

addition, curve or cylinder fitting methods should take the stem diameter variation into account, which 
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could increase the computation complexity. Finally, our merging method needs only one threshold that 

is intuitively clear. 

Using this direction-growing algorithm, stem clusters from the same bamboo are merged. Although 

many bamboos in the test plots grew aslant and large gaps existed between clusters, the proposed method 

could still merge the clusters correctly. Figure 6 shows details of merged stems in both plots. Colors of 

stems were randomly selected to distinguish each other. 

  

Figure 6. (a) Side view of Plot A: Bamboo on the hillside is inclined and stem clusters are 

fragmentized. (b) Details of Plot B: Stems are clumped and some are seriously inclined. 

However, there are still 11 falsely connected stems that belong to Type II error. Figure 4 shows that 

the main cause of Type II error is related to the spatial distribution between neighboring stems, not the 

distance to the scanner. Possible errors are illustrated in Figure 7. Figure 7a shows neighboring bamboos 

that are very close to each other or even cling together. If the distance between bamboos is shorter than 

the threshold  in the direction–growing process, they will be merged as one stem and thus cause 

errors in counting. In addition, if parts of stems cling together, the points from different stems will be 

grouped together in the clustering and lead to Type II errors directly. However, this kind of situation 

rarely happens. 

Most of errors happen in the situations as shown in Figure7b–e. If stems are close to each other and 

their curves are approximately in the same plane, different clusters may be connected incorrectly after 

the seed growing. Some false stems may contain parts of others (Figure 7c,d). Although these cases will 

make no difference in number counting, but in the validation process, they will be labeled as wrong 

stems. Some detected stem may consist of neighboring stems (Figure 7e) and thus reduce the number of 

mapped stems. In this study, 10 out of 11 stems of Type II error belong to these situations as shown in 

Figure 7b–e. 

stemd



Forests 2015, 6 3938 

 

 

 

Figure 7. Error types: (a) Bamboos are too close to each other; (b) two independent stems; 

(c) mutual containment of two stems after growing; (d) one stem (in red) contains part from 

the other one; and (e) two stems are totally merged as one. 

Although errors that occur during the direction-growing process seem unavoidable, there are still two 

possible ways to reduce errors during the clusters merging. Firstly, a smaller threshold  is helpful 

in reducing the Type II error. For instance, three neighboring stems were recognized as one (magenta) 

in Figure 8a. In Figure 8b, by setting , one (red) of the three stems can be separated. The 

second method is to adopt a bigger  to delete small stem clusters, because the directions of small 

clusters are often incorrect and affect the results. In Figure 8c, by setting , three stems are 

separated correctly. However, changing parameters for eliminating some errors may affect the results of 

other stems. It is better to extract false stems first and then set specific parameters to achieve better results. 

 

Figure 8. Error correction: (a) Error connected results; (b) results by setting ; 

and (c) merged results by setting . 
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5.3. Measuring Range and Quality Assessment 

Since the high density of the plants has a strong influence on data collections, areas of both plots are 

smaller compared with previous studies in sparse forest. To reduce the shadowing effect, the scanner 

was put adjacent to plots instead of inside of the plot during the field experiments. However, the canopy 

density and the distance to the scanner still have a strong influence on integrity of stem points. In brief, 

the visibility is limited and few laser returns can be recorded at a slightly long distance, for example,  

8 m in tested plots. Therefore, a suitable measuring range in very dense forest is worth discussing. 

To give a general idea of original points cloud in dense forest, a slice with distance ranges from 0 to 

16 m was extracted and presented in Figure 9. It shows that the point density dropped significantly as 

the distance increases. In fact, when the distance is further than a certain value (e.g., 8 m) in this slice, 

the appearance of bamboo could hardly be recognized in points cloud. These sparse points are less 

valuable in forest investigation and hence the measuring range should be smaller than a threshold. 

However, it is difficult to give an exactly measuring range threshold in dense forest, because various 

factors contribute to the threshold determination. First, stem density and distribution in different forests 

are quite different, for example, trees in man-planted forest are usually spaced at regular intervals while 

the same species in natural environment may be clumped, and this will pose different influences on the 

shadowing effect. Second, the measuring range threshold should also take the original point density and 

the quality of data, e.g., noise level as well as accuracy into account. This can be done through browsing 

the original data directly and then selecting a suitable range according to the experimental objective and 

experience. Last, as for the stem mapping method in this paper, although we chose 8 m as the measuring 

range threshold, further discussion about the stem detection quality along with its relationship with the 

shadowing effect is needed. 

 

Figure 9. A slice of original point clouds. Left side is near to the scanner. 
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To make quantitative analysis about detected results, we proposed an indicator named effective height 

( ). The indictor is defined in Equation (12) where n is the number of contained clusters in each stem. 

 is the distance between  and  corresponding to the highest and lowest points of 

each cluster, respectively. 





n

i
lihiie PPDH

1
,, ),(  (12) 

Effective height is, essentially, the total length of a detected stem. A large  indicates a good stem 

quality. Table 4 summarizes the statistical results of  in both plots. Only the correctly detected stems 

are analyzed. There are about 52% of all the stems with their heights higher than 4.0 m and 17 detected 

stems are more than 6.0 m high. However, 17.1% of detected stems are lower than 2.0 m, which indicates 

that only a small fraction (less than 20%) of a whole stem is detected. In general, the mean effective 

height is about 4.0 m. 

Table 4. Statistics on effective height ( ) of detected stems. 

 (m) <2.0 2.0–3.0 3.0–4.0 4.0–5.0 5.0–6.0 6.0–7.0 >7.0 Sum 

Plot A 15 13 7 19 12 3 4 73 

Plot B 10 14 11 18 10 6 4 73 

Total 25 27 18 37 22 9 8 146 

Percentage 17.1% 18.5% 12.3% 25.3% 15.1% 6.2% 5.5%  

Several factors affect the total length of detected stems. As discussed in Section 5.1, clusters in small 

size may be ignored during classification and clustering processes. However, these clusters are small in 

height (e.g., less than 0.1 m) and have little influence on the final results. Furthermore, the defect in 

identifying the upper parts of stems may lead an under-estimation of stem length. As the diameter of 

stems decreases with height, if a stem’s diameter is small enough (e.g., 2 cm in this study), its two-scale 

properties will be similar to the branch, thus upper parts can be easily missed after classification. 

However, this error is not just caused by classification method, in fact, upper parts of stems are usually 

surrounded by dense foliage, which makes their visibility quite low, and few points from upper stems 

can be recorded. This will increase the ambiguity in eigenvalue-based geometric calculation and make 

points more likely to be classified as “volumetric” which will been discarded soon afterwards. 

The shadowing effect and distance to scanner are strongly coupled. For clarity, effective height ( ), 

the grid density (i.e., number of points in every 0.5 m along the distance) and the measuring range of 

Plot A are plotted in Figure 10. It can be found that the grid density dropped rapidly after the first row 

of bamboo stands. However, if there are no objects (e.g., foliage) shading the lasers, the point spacing 

within a small measuring range (e.g., 8 m in this paper) will change little, so the reason for a sharp 

decline in point number is shadowing. The bamboo in the front blocks much of the emitted lasers.  

In addition, the effective height ( ) tends to decrease as the measuring range increases in Figure 10. 

According to the trend line in Figure 10, when the distance is greater than 5.5 m,  is more likely to be 

less than 3.0 m. However, if only the stems within 3.5 m along measuring range are evaluated, the mean 

effective height is 5.1 m (27 detected stems in total). 

eH

),( ,, lihii PPD hiP , liP ,

eH

eH

eH

eH

eH

eH

eH



Forests 2015, 6 3941 

 

 

In summary, the fragmentary clusters, the missing upper stems and the drastic reduction in returns 

are all directly related to the shadowing effect, which is the primary cause of stem height 

underestimation. Therefore, the effective measuring range is largely decided by the shadowing effect, 

which varies in species, stem density and the spatial distribution of the plant distribution. 

 

Figure 10. Point counts and  change with distance in Plot A. The correlation coefficient 

between trend line and height data is 0.37. 

There are two ways for selecting a suitable measuring range. First, stem points are assumed to be 

classified as “planar” at first scale in classification. Significantly, the upper bound ( ) of the first 

interval is usually smaller than the stem radius (e.g., 4 cm in this paper), and thus to keep the geometry 

significance, sufficient points within the upper bound of a point are needed. In addition, a large point 

spacing of stem points will lead the stem cluster to be fragmentary and ignored during clustering process. 

Thus, the minimum point spacing of stem points is recommended to be a fifth of the stem radius 

empirically. The measuring range can be determined according to this criterion. Besides, a direct way is 

to run the detection algorithm on original point clouds first and we can get a relationship between 

distance and effective height, e.g., the trend line in Figure 10. Then the effective measuring range can 

be determined according to requirements, for example, if the detected stem height is expected to be no 

less than 3.0 m, the measuring range in Figure 10 should be less than 5.5 m. 

Besides selecting a suitable effective measuring range, there are still several ways to get better results. 

For example, to improve the detected length of stems, it is possible to model the stem curve using the 

detected sections first, and then search candidate stem points along the stem curve in the original point 

clouds. However, the stem diameters vary at different height while the DBH and tree height are usually 

required to model precise stem curve. Liang et al. [5] modeled the stem curve automatically from point 

clouds, but their study was done in a sparse forest (600 stems/ha) using multi-scan point clouds and 

validated with many field measurements. Therefore, the potential improvement of mapping stem length 

remained unclear at this stage and further research is needed. 
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Selecting the scanner position carefully to reduce blocking or combining points from multi-scans may 

also improve the detection accuracy. However, the shadowing effect is inevitable and unpredictable in 

different scenes, and increasing the point density may offer little help to reduce the occlusion [5,30], 

especially to the upper parts of stem. However, maybe we can map stems using single-scan data and 

then combine detection results from multi-scans to improve the integrity of stem structure as well as the 

detection rate. To be more exact, stem points in each scan are detected and connected independently, 

and then results from all the scans are registered according to their coordinates. 

This combination method will be useful in large areas. Generally, it always needs many scans to cover 

a large forest area, for example, Seidel et al. [31] applied the single-scan TLS to an oak forest and they 

took 15 scans to cover the plot (290 m2). In this paper, if we use 5.5 m as an effective measuring range 

in each scan, it would probably need 105 scans to cover a whole hectare, while the distance between 

adjacent scanners may be approximate to twice the effective measuring range, e.g., 11 m. However, if a 

longer measuring range in each scan is set, e.g., 8 m, and the spacing between adjacent scanners is longer 

than 11 m but smaller than 16 m, e.g., 14 m, we may get better stem detection results with less scans 

(approximately 65) in one hectare by combining multi-scan detection results. However, further 

experiments are needed to explore the feasibility and potential problems in practice. 

Although combining multi-scan results is a potential way to reduce the number of scans, field 

experiments are still lab intensive and time consuming in large areas. A smaller Laser scanner or a 

moveable Laser scan system [32] can be applied to collect multi-scan data in forests efficiently and also 

the occlusion can be reduce to some extent. 

6. Conclusions 

Stem detection or mapping is usually studied in low-density forests (e.g., less than 1500 stem/ha) and 

stems with big DBH (e.g., larger than 10 cm). However, the shadowing effect is more significant in 

dense forests and causes new problems. For example, close-spaced plants, thin and bended stems bring 

new difficulty in distinguishing the neighboring stems and merging the disconnected sections. This paper 

presented a new method for detecting stems from the single-scan point clouds in dense and homogeneous 

forests. The method needs neither circle or cylinder fitting nor terrain information to determine the stem 

locations. A two-scale classification algorithm is designed to find candidate stem points, and then group 

the stem points using the Euclidean clustering. Finally, a simple stem curve model is introduced to 

resolve the merging problem. 

The proposed method is tested in a typical bamboo forest (plant density is about 7500 stem/ha) and 

144 of 166 reference stems are detected correctly. The completeness of the stem detection is 88%, which 

is close to that of the state-of-the-art methods. The measuring range of this method is largely decided by 

the shadowing effect and limited within 8 m in the experimental plots. According to the results and 

quality analyses, it is feasible to apply the single-scan TLS in dense forest investigation, especially for 

stem mapping. We also believe that vegetation point clouds classification may benefit from multi-scale 

features and the proposed stem-merging algorithm can be applied to other species of single-stem plants 

with high stem densities. Further studies on the parallel multi-scale feature computation, combination of 

several single-scan detection results and mapping stems in large areas are needed. 
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