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5Abstract The application of pan-sharpening techniques to very high resolution

6(VHR) satellite data can fruitfully improve the enhancement of archaeological

7marks and facilitate their detection. Nevertheless, the quantitative evaluation of

8the quality of the fused images is one the most crucial aspects in the context of data

9fusion. This is because (i) data fusion application is a rather recent technique

10applied to archaeology; (ii) the criteria generally adopted for the data fusion

11evaluation can not fit the needs of this type of application. This chapter provides

12an overview of pan-sharpening techniques and quantitative evaluation of their

13capability in (i) preserving spectral fidelity and (ii) sharpening spatial and textural

14content.
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174.1 Introduction

18The use of pan-sharpening techniques enables the integration of the complementary

19information acquired from the panchromatic and multispectral (MS) imaging

20sensors. The higher spatial resolution of the panchromatic can be suitably merged

21with the spectral capability of multispectral channels.
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22 Over the years, a number of algorithms have been developed for data fusion,

23 among them we will focus on the most widely used: Intensity-Hue-Saturation

24 (IHS), Principal Component Analysis (PCA), different arithmetic combination

25 (e.g., Brovey transform), Zhang algorithm, high-pass filtering, Ehlers algorithm,

26 multi-resolution based methods (e.g., pyramid algorithm, wavelet transform), and

27 Artificial Neural Networks (ANNs).

28 The evaluation and numerical comparisons of the diverse pan-sharpening

29 algorithms is quite complex. Several statistical indicators have been designed for

30 assessing the performance of image fusion algorithms in terms of preserving both:

31 (i) spectral fidelity and (ii) spatial and textural content. In this chapter we focus

32 on the specific requirements necessary for the enhancement of archaeological

33 features through pan-sharpening techniques as well as on the evaluation of their

34 performance.

35 4.2 Data Fusion in Remote Sensing for Archaeology

36 The use of data fusion techniques can fruitfully improve the enhancement of

37 archaeological marks and make their detection easier by exploiting jointly the

38 higher spatial resolution of the panchromatic image and the multispectral properties

39 of the spectral channels (Fig. 4.1). Moreover, another advantage of using data

40 fusion products is that the increased spatial resolution can fruitfully provide a

Fig. 4.1 Pan-sharpening allows us to exploit the higher spatial resolution of the panchromatic

image and the multispectral properties, thus improving the enhancement of archaeological features
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41more accurate localization of the archaeological features. This more accurate

42localization, from the initial spatial resolution of multispectral data around meter

43(2.4 m for QuikBird, 2 m for GeoEye) to the sub-meters spatial resolution of

44panchromatic (0.6 m for QuickBird or 0.5 m for GeoEye) can be very helpful

45during in situ survey, such as GPS (Global Position System) campaigns, geophys-

46ical prospection or excavation trials.

47Nevertheless, in order to take advantages from data fusion techniques, it is

48mandatory to quantitatively evaluate the benefits of different algorithms and

49approaches (Alparone et al. 2007). The quantitative evaluation of the quality of

50the fused images is yet one of the most crucial aspects in the context of data

51fusion. This issue is particularly relevant in the case of the identification of

52archaeological marks, because (i) data fusion application is a rather recent topic

53approached in the field of remote sensing of archaeology (Lasaponara and Masini

542007; Aiazzi et al. 2008; Lasaponara et al. 2008); (ii) the criteria generally adopted

55for the data fusion evaluation cannot fit the needs of remote sensing archaeology

56that are mainly focused on the identification of small features, that can be easily

57obscured by noise.

58The best results from data fusion is that the multispectral set of fused images

59should be as identical as possible to the set of multispectral images that the

60corresponding sensor (Alparone et al. 2007; Aiazzi et al. 2008; Lasaponara et al.

612008) would observe with the high spatial resolution of panchromatic.

62As no multispectral reference images are available at the requested higher spatial

63resolution, the assessment of the quality of the fused products is not obvious.

64Several score indices or figure metrics have been designed over the years (see

65Thomas and Wald 2004) to evaluate the performances of the fused images. Both

66intra-band indices and inter-band indices have been set up in order to measure

67respectively, spatial distortions (radiometric and geometric distortions) and spectral

68distortions (colour distortions).

69In order to assess the performance of data fusion algorithms, three properties

70should be verified as expressed by Wald et al. (1997): (1) the data fusion products,

71once degraded to their original resolution, should be equal to the original; (2) the

72data fusion image should be as identical as possible to the MS image that would be

73acquired by the corresponding sensor with the high spatial resolution of the Pan

74sensor; (3) the MS set of fused images should be as identical as possible to the set of

75MS images that would be acquired by the corresponding sensor with the high spatial

76resolution of Pan.

77As no multispectral reference images are available at the requested higher

78spatial resolution, the verification of the second and the third property is not

79obvious. In order to overcome this drawback, diverse methodological approaches

80can be used: (i) the Wald protocol (Wald et al. 1997), (ii) the Zhou protocol (Zhou

81et al. 1998), and, finally, (iii) the QNR (Quality with No Reference) index devised

82by Alparone et al. (2007). In Sect. 3 we provide an overview of the currently

83available pan-sharpening techniques and in Sect. 4 detail for their numerical

84evaluation.
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85 4.3 Overview on Pan-Sharpening Techniques

86 Pan-sharpening is a branch of image fusion that is receiving ever increasing

87 attention from the remote sensing community for multiple applications in different

88 fields such as pattern recognition, visual enhancement, classification, change detec-

89 tion, object detection and area surveillance (Pohl and Van Genderen 1998).

90 New-generation space-borne imaging sensors operating in a variety of ground

91 scales and spectral bands provide huge volumes of data having complementary

92 spatial and spectral resolutions. Constraints on the signal to noise ratio (SNR)

93 impose that the spatial resolution must be lower, if the desired spectral resolution

94 is larger. Conversely, the highest spatial resolution is obtained whenever no spectral

95 diversity is required. The trade-off of spectral and spatial resolution makes it

96 desirable to perform a spatial enhancement of the lower resolution multi-spectral

97 (MS) data or, equivalently, to increase the spectral resolution of the data-set having

98 a higher ground resolution, but a lower spectral resolution; as a limit case,

99 constituted by a unique panchromatic image (Pan) bearing no spectral information.

100 According to Jiang Dong et al. 2009, pan-sharpening may be obtained at

101 different levels, which are categorized as follow: (i) signal level, (ii) pixel level,

102 (iii) feature level, and (iv) decision level as follows (see Fig. 4.2):

103 (1) Signal level fusion algorithms elaborate signals acquired from different sensors

104 to create a new signal characterized by an improved signal-to noise ratio respect

105 to that of the original signals.

106 (2) Pixel level fusion algorithms elaborate information on a pixel-by-pixel basis to

107 create a fused image from a set of pixels in original images to improve features

108 visibility and results from image processing tasks such as segmentation, classi-

109 fication, etc

110 (3) Feature level fusion algorithms elaborate information on feature level after the

111 recognition and extraction of objects from pixel intensities, edges or textures in

112 the original data sources.

113 (4) Decision-level fusion algorithms elaborate information at a higher level of abstrac-

114 tion, namely information extraction is carried out using results from multiple

115 algorithms which are then combined using given decision rules.

Fig. 4.2 Pan-sharpening categorization
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116Over the years numerous image fusion techniques have been developed.

117Among them we will focus on the most widely used: intensity-hue-saturation (IHS),

118principal component analysis (PCA), different arithmetic combination (e.g. Brovey

119transform), Zhang, high-pass filtering, Ehlers, multi-resolution analysis-basedmethods

120(e.g., pyramid algorithm, wavelet transform), and Artificial Neural Networks (ANNs).

121These methods are based on the following general protocol: the high-resolution

122geometrical information of the Pan scene is extracted and incorporated into the low-

123resolution MS images, by a proper modelling of the relationships between the Pan

124and MS bands.

125In general, the image fusion methods can be divided into these three main classes

126depending on how the spatial details are extracted from the Pan image:

127(i) techniques based on arithmetic combinations of multispectral images

128resampled at the higher spatial resolution of Pan;

129(ii) component substitution (CS) techniques based on a spectral transformation of

130the MS data followed by replacement of the first transformed component with

131the Pan image. Later a reverse transformation is carry out to yield back the

132sharpened MS bands;

133(iii) techniques that employ multi-resolution analysis (MRA) to extract the geo-

134metrical information that will be added to the MS bands, from the Pan image.

1354.4 Pan-Sharpening Techniques Based on Arithmetic

136Combinations

137The simplest approach for fusing the Pan and MS images is based on arithmetic

138combinations of different scenes performed at the pixel level. This approach is

139generally obtained through two computation steps:

140(I) Re-sampling of the selected spectral bands to the panchromatic spatial

141resolution;

142(II) selection and application of the arithmetic combinations, which span from the

143simple multiplication, to Brovey transformation, Synthetic Variable Ratio

144(SVR), and Ratio Enhancement

1454.4.1 Multiplicative Approach Fusion

146This algorithm is one of the simplest pan-sharpening algorithms being only based

147on the multiplication of each multispectral band with the panchromatic image. The

148image fusion is carried out as follows:

149(i) selection of spectral bands and resampling to panchromatic spatial resolution;

150(ii) application of multiplication to obtain the transformation
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Fusionk ¼ Multik � Pan (4.1)

151 Fusionk is the kth fused multispectral band, Multik is the kth original MS image

152 resampled to the Pan spatial resolution.

153 The advantages of the multiplicative approach are the following: (i) it does alter

154 the spectral characteristics of the original image data, (ii) it is simple and quite fast

155 4.4.2 Brovey Transformation

156 Brovey equation is designed on the basis of the assumption that spectral range of the

157 panchromatic image is the same as that covered by the multispectral data. The

158 transformation is defined by the following equation:

Fusionk ¼ Multik
Multisum

� Pan (4.2)

159 Fusionk is the kth fused MS band, Multik is the kth original MS image, Multisum
160 is a synthetically panchromatic image obtained by the sum of MS bands at the same

161 resolution as the original MS images.

162 The image fusion is carried out as follows:

163 (i) selection of spectral bands and resampling to panchromatic spatial resolution;

164 (ii) application of Brovey transformation.

165 Brovey transformation is implemented in the most popular image processing

166 software such as PCI ENVI, ERDAS, etc.

167 4.4.3 Synthetic Variable Ratio (SVR) and Improved-SVR

168 The SVR pan-sharpening method (Munechika et al. 1993) is based on Eq. 4.3

Fusionk ¼ Multik
Pansyn

� Pan (4.3)

169 Fusionk is the kth fused multispectral band,Multik is the kth original MS image,

170 Pansyn is a synthetically panchromatic image obtained at the same resolution as the

171 original MS images by Suits et al. (1988) equation:

Pansyn ¼
X4
i¼1

’i X SLi (4.4)

172 The parameters ’i are only computed for some typical land cover types: (i) urban,

173 (ii) soil, (iii) water, (iv) trees and (v) grass using a regression analysis between
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174the values simulated through a given atmospheric model and those measured. The

175histogram matching was used to force the original Pan image to the PanSyn.

176Zhang (2004) developed a data fusion algorithm specifically devised for VHR

177satellite images and mainly based on the computation of the parameters ’i using a

178multiple regression analysis instead of only consider the five main land covers listed

179before (urban, soil, water, trees and grass).

180According to Zhang (2004), this statistics-based fusion technique may solve

181the two major problems in image fusion: (i) color distortion and (ii) operator (or

182dataset) dependency the following ways:

183(1) the reduction of the color distortion is obtained through least squares technique

184to find the best fit between the grey values of the image bands being fused and to

185adjust the contribution of individual bands to the fusion result;

186(2) the elimination of dataset dependency is carry out by employing a set of statistic

187approaches to estimate the grey value relationship between all the input bands

188This algorithm is available in a PCI-Geomatics routine (PANSHARP). In the

189PANSHARP routine, if the original MS and Pan images are geo-referenced, the

190resampling process can also be accomplished together with the fusion within one

191step. All the MS bands can be fused at one time. The fusion can also be performed

192solely on user-specified MS bands.

193Wang et al. 2008, developed an improved synthetic variable ratio method for

194image fusion, mainly based on the assumption that the radiance of the synthesized

195panchromatic band can be obtained integrating the radiance of MS bands under the

196hypothesis that the panchromatic band covers exactly the same range as the MS

197bands to be processed. Therefore, in these conditions, the radiance of the

198synthesized panchromatic images can be obtained as the integral. The computation

199is arranged in this way (see Fig. 4.3):

200(i) the radiance of each MS band is assumed as equal to the rectangular area;

Fig. 4.3 Computation scheme of Wang et al. 2008 algorithm
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201 (ii) regarding the gap between the spectral bands, the radiance is obtained as the

202 area of the trapezoid areas between the rectangles;

203 (iii) finally, the integral is obtained by summing all the areas together.

204 4.5 Pan-Sharpening Techniques Based

205 on Component Substitution

206 Pan-sharpening Component Substitution (CS) is a typology of simple and fast

207 technique based on a spectral transformation of the original bands in a new

208 vector space. Most widely used transformations are Intensity-Hue-Saturation

209 (IHS), Principal Component Analysis (PCA; see Richards and Jia 2006 and Sect.

210 2.3.4.2 in this book), and Gram-Schmidt orthogonalisation procedure (Laben et al.

211 2000; Aiazzi et al. 2007).

212 The rationale of CS fusion is that one of the transformed components (usually

213 the first component or intensity, IL) is substituted by the high-resolution Pan image,

214 P, before the inverse transformation is applied.

215 4.5.1 Principal Component Analysis Pan-Sharpening

216 In pan-sharpening based on PCA (Chavez et al. 1991), the PAN image replaces the

217 first principal component. Prior to the substitution, the PAN image is stretched such

218 that its mean and variance are similar to that of the first principal component

219 (Fig. 4.4).

Fig. 4.4 PCA pan-sharpening scheme
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2204.5.2 Intensity Hue Saturation (IHS) Pan-Sharpening

221IHS fusion technique, originally defined for three bands only, has been extended to

222an arbitrary number of spectral bands (Tu et al. 2004).

223The IHS transform converts a color MS image from the RGB space into the IHS

224color space. Because the intensity (I) band resembles a panchromatic image, it is

225replaced by a high-resolution Pan image in the fusion. A reverse IHS transform

226is then performed on the Pan together with the hue (H) and saturation (S) bands,

227resulting in an IHS fused image.

228As for the case of pan-sharpening based on PCA, to ensure a global preservation
229of radiometry, the Pan band is histogram-matched to Intensity, in such a way that

230the two images exhibit same global mean and variance.

231However, since the histogram-matched Pan image and I may not have the same

232local radiometry, spectral distortion, may occur and appear as local colour changes in a

233composition of three bands at a time. To mitigate local spectral distortion, I may be

234taken as a linear combination of the MS bands with weighted coefficients. These are

235adjusted to the overlap between the spectral response of each MS channel and that of

236the Pan image. In principle, if the low-pass approximation of the Pan image synthesised

237by combining the spectral channels exactly matches the low-resolution version of

238Pan, spectral distortion does not occur (Tu et al. 2004; Aiazzi et al. 2007) (Fig. 4.5).

2394.5.3 Gram Schmidt

240The Gram Schmidt (GS) pan-sharpening (Kodak / RSI patent) is based on the Gram

241Schmidt transformation. As PCA, this transformation rotates the original axes

242applying orthogonalization process to obtain a new reference system with less

243correlated components.

Fig. 4.5 IHS scheme
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244 The GS approach is based on the following steps:

245 (i) Pan simulation by averaging the multispectral bands;

246 (ii) GS transformation using simulated Pan, assumed as the first band, and the MS

247 bands;

248 (iii) Pan replaces the first GS component;

249 (iv) inverse GS transform to obtain the pan-sharpened products

250 Compared to PCA pan-sharpening, GS fusion products are less dependent on the

251 dataset under processing.

252 Figure 4.6 shows the pan-sharpened RGB image of an archaeological site

253 obtained by PCA e Gram Schmidt method. The latter allows us to discriminate

254 the archaeological features better than PCA method.

Fig. 4.6 Pan-sharpening of QuickBird multispectral images: Yrsum (Irsina, Southern Italy).

(a) RGB of multispectral images; (b) Pan; (c) RGB of pan-sharpened channels by PCA method;

(d) RGB of pan-sharpened channels by Grahm-Schmidt method. Grahm-Schmidt method allows

us to discriminate the archaeological features better than PCA method



2554.6 Pan-Sharpening Techniques Based on Fourier Transform

256The pan-sharpening techniques based on the Fourier Transform (Chavez et al.

2571991) are based on the following computational steps:

258(I) extraction of the high frequency components from the PAN image using a high

259pass filter;

260(II) injection of the high frequency components into low frequency components of

261the multispectral images, to generate the corresponding sharpened images.

262Examples of this technique are: (i) Ehlers fusion (Ehlers 2004) method which is

263implemented in commercial image processing ERDAS; (ii) high pass filtering

264techniques available as routine in the most popular image processing software

265such as PCI, ENVI, ERDAS.

2664.6.1 Ehlers Fusion Technique

267The Ehlers (Ehlers 2004) fusion technique is based on the following steps:

268I. IHS transform is used to separate the spatial and color information

269II. the Fourier transform, low-pass (LP) filter, is applied to intensity (obtained

270from the IHS transform)

271III. the Fourier transform, high-pass (HP) filter, is applied to Pan

272IV. the inverse Fast Fourier transform (FFT�1), is applied both to the filtered

273images are converted back into the spatial domain and summed to merge the

274low and high frequency information derived from the coarse Intensity channel

275and Pan, respectively

276V. the final fused images are obtained applying the inverse IHS transformation

277(IHS�1) (Fig. 4.7).

Fig. 4.7 Ehlers fusion technique scheme
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278 4.6.2 High Pass Filtering (HPF) Approach

279 High pass filtering (HPF) pan-sharpening uses a high pass convolution filter kernel

280 whose size is generally equal to the ratio between the spatial resolution of the Pan

281 and MS images. The pan-sharpening products are obtained as follows:

282 (i) Pan is filtered using HPF, weighted (weights equal to kernel size) and added to

283 each multispectral band.

284 (ii) A linear stretch is applied to pan-sharpened products to match the mean and

285 standard deviation of MS images

286 The process may be also expressed by Eq. 4.5.

MSk ¼ Whigh � HF½PAN�
� � � Wlow � LF½MS0k�f g (4.5)

287 WhereMSk is the kth pan-sharpened image, PAN is the panchromatic image,MS0k is
288 the original multispectral image, HF and LF correspond to the high and low pass

289 filter operators, respectively

290 High frequency components are related to the spatial detail, whereas low

291 frequency components contain spectral information.

292 The performance of these techniques depends on filtering, Kernel types, window

293 size, and weights (Whighand Wlow.) which determine the amount of frequency

294 components to be combined. Generally high pass filter provide satisfactory results

295 also for multitemporal and multisensor data sets.

296 4.7 Multi-scale Pan-Sharpening Techniques

297 Pan-sharpening techniques based on a multiscale or multiresolution approach

298 substantially split the spatial information of the MS bands and Pan image into a

299 series of band-pass spatial frequency channels. The high frequency channels are

300 inserted into the corresponding channels of the interpolated MS bands. The sharp-

301 ened MS bands are synthesised from their new sets of spatial frequency channels.

302 Over the years a number of pan-sharpening methods based on Laplacian pyramid

303 (Núñez et al. 1999; Garzelli and Soldati 2001; Aiazzi et al. 2002). have been widely

304 used since the 1980. Recently, the use of wavelet has largely substituted the

305 Laplacian approach.

306 4.7.1 Wavelet Transforms

307 Recently, wavelet data analysis has become one of the fastest growing research

308 areas, being used for a number of different fields and applications, such as signal

98 R. Lasaponara and N. Masini



309imaging, numerical analysis, biomedical data analysis, and image processing,

310including image compression and reconstruction, image segmentation, pattern

311recognition, and satellite image fusion.

312Wavelet methods transform a signal from time domain into time-frequency

313domain. It is evident that signal wavelet decomposition using Discrete Wavelet

314Transform (DWT) provides an alternative to the Discrete Fourier Transform (DFT).

315The main ability of DWT is the multi-resolution time-scale analysis, which is also

316the main advantage of DWT respect to DFT.

317In the field of image processing, DWT acts in this way: an image is decomposed,

318with each level corresponding to a coarser resolution band.

319The general scheme of the wavelet-based pan-sharpening highlights the fact that

320detail spatial information is extracted from the Pan image using wavelet transforms

321and injected into the MS image through the following three steps:

322(i) the Pan image is decomposed into a set of low-resolution images characterized

323by corresponding wavelet coefficients (which provide spatial details for each

324level);

325(ii) a MS image replaces the low-resolution Pan at the resolution level of the

326original MS image

327(iii) Pan spatial detail is injected into each MS band by carrying out a reverse

328wavelet transform using the corresponding wavelet coefficients.

329Compared to other standard pan-sharpening techniques, wavelet generally

330performs better minimizing both color distortion and de-noising effects; nevertheless,

331spectral content of small objects can often be lost in the fused images. Some other

332general limitations are (i) the computational complexity; and (ii) the need to set up

333threshold values for certain parameters thus limiting the exportability to different

334applications, geographic regions, land cover and land use, and surface characteristics.

335Pan-sharpening techniques based on DWT are implemented in many commer-

336cial image processing softwares, such as ENVI, PCI, ERDAS.

337Some improved DWT, such as Ridgelet, Curvelet, and Contourlet transformation

338could provide better performance and results, but they have a greater computation

339complexity and still require setting of threshold values for given parameters (Fig. 4.8).

3404.8 Artificial Neural Network

341In the pan-sharpening based on Artificial Neural Networks (ANNs; additional infor-

342mation are in Chap. 2 Rumelhart et al. 1986; Werbos 1990) the general schematic

343approach can be summarized as follows:

344(i) two co-registered images are decomposed into several blocks with size of

345M and N;

346(ii) features of the corresponding blocks are extracted from the original Pan and

347MS images to obtain the normalized feature vectors;
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348 (iii) training step is carried out from selected vector samples (Fig. 4.9).

349 The ANN pan-sharpening methods are quite efficient for high dimension data,

350 such as hyper-spectral or long-term time-series data, as well as for data frommultiple

351 sensors, such as active and passive sensors, Radar and VHR satellite images. The

352 learning step of ANN can be time consuming and computationally complex.

353 4.9 Integrated Data Fusion Approaches

354 The most difficult aspect in data fusion is the integration of multisource remote

355 sensing data as in the case of active and passive satellite sensors. As an example,

356 fusion of SAR and optical imagery is much more difficult than the ordinary

357 pan-sharpening because the SAR data do not correlate with multispectral imagery.

358 Therefore, classical approaches of multisensor image fusion such as techniques

Fig. 4.8 Wavelet data fusion scheme

Fig. 4.9 ANN pan-sharpening scheme

100 R. Lasaponara and N. Masini



359based on multiplication (such as Brovey transform), or component substitution

360(PCA, IHS) are not suitable for fusing together the spectral detail of optical data

361with the spatial and texture features of SAR image.

362To overcome these drawbacks, feature and decision level fusion or multisource

363classifiers can be used (Schistad Solberg et al. 1994; Schistad Solberg et al. 1996).

364In this context, wavelet multiresolution analysis has been applied successfully

365(Sveinsson et al. 2001; Cakir et al. 1999; Chibani and Houacine 2000; Alparone et al.

3662004). For example, Alparone et al. (2004) is based on the following three steps:

367(i) extraction of SAR texture through rationing the (despeckled) SAR image with

368its low pass approximation,

369(ii) extraction of details from the Pan image using á trous wavelet

370(iii) high pass filtering based on modulation (HPFM) fusion method.

371Wavelet transforms are one of the most widely used methods for extracting

372feature from multisource remote sensing data. They are also used in conjunction

373with other methods, such as neural network classifier.

374One more example of image fusion method of optical (Pan and MS) and SAR

375data is in Garzelli (2002). The proposed approach is mainly based on the wavelet

376analysis and provides an integrated map in which selected information/features/

377object from SAR data are injected into the optical imagery.

3784.10 Data Fusion Performance Evaluation

379The assessment of the quality of the fused products is quite difficult, because no

380multispectral reference images are available at the requested higher spatial resolu-

381tion. Over the years, several score indices or figure metrics have been devised (see,

382for example Thomas and Wald 2004) to evaluate the performances of the fused

383images. Spatial distortions (radiometric and geometric distortions) and spectral

384distortions (colour distortions) are generally evaluated using both intra-band indices

385and inter-band indices.

386Wald et al. (1997) suggested that to assess the performance of data fusion

387algorithms, the three following properties should be fulfilled:

3881. The data fusion products, once degraded to their original resolution, should be

389equal to the original.

3902. The data fusion image should be as identical as possible to the MS image that

391would be acquired by the corresponding sensor with the high spatial resolution

392of the Pan sensor.

3933. The MS set of fused images should be as identical as possible to the set of MS

394images that would be acquired by the corresponding sensor with the high spatial

395resolution of Pan.

396As no multispectral reference images are available at the requested higher spatial

397resolution, the verification of the second and the third property is not obvious.
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398 In order to overcome this drawback, these following methodological approaches

399 can be used: (i) the Wald protocol, (ii) the Zhou protocol, and, finally, (iii) the QNR

400 (Quality with No Reference) index devised by Alparone et al. (2007).

401 4.10.1 Wald Protocol

402 In order to solve the problems linked to the unavailability of the multispectral

403 reference images, Wald et al. (1997) suggested a protocol to be applied in order to

404 evaluate the quality of data fusion products. Such a protocol is based on the

405 following three steps:

406 1. spatial degradation of both the Pan and MS images by the same factor,

407 2. fusing the MS images at the degraded scale;

408 3. comparing the fused MS images with the original reference MS images.

409 The Wald protocol assumes a scale invariance behaviour.

410 This means that performances of fusion methods are supposed to be invariant

411 when fusion algorithms are applied to the full spatial resolution. Nevertheless, in the

412 context of remote sensing of archaeology, the small features, which represent a large

413 amount of the archaeological heritage, can be lost after degrading both the Pan and

414 MS. In these situations, the archaeological features will be missed, and, therefore, the

415 evaluation of data fusion results could not be performed over the targets of interest.

416 4.10.2 Zhou Protocol

417 As an alternative to the Wald’s protocol, the problem of measuring the fusion quality

418 may be approached at the full spatial scale without any degradation by applying

419 Zhou’s Protocol (Zhou et al. 1998). Such a protocol is based on the following three

420 criteria:

421 (1) Both the spectral and spatial qualities are evaluated, but by using separate

422 scores from the available data: the first from the low resolution MS bands and

423 the second one from the high resolution Pan image.

424 (2) The evaluation of spectral quality is performed for each band by computing an

425 absolute cumulative difference between the fused and the input MS images.

426 (3) The evaluation of spatial quality is obtained as the correlation coefficient (CC)

427 computed between the spatial details of the Pan image and of each of the fused

428 MS bands.

429 Such spatial details are extracted by using a Laplacian filter. Unfortunately,

430 some problems can arise by using Zhou’s Protocol (Alparone et al. 2007). Firstly,

431 the two quality measures follow opposite trends. Secondly, at degraded scale, the

432 obtained results cannot be in agreement with objective quality indices.
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4334.10.3 QNR Index

434The QNR (Quality with No Reference) index devised by Alparone et al. (2007) is a

435“blind” index capable of jointly measuring the spectral and spatial quality at the full

436scale. This index should allow to overcome the drawbacks that can arise when using

437Zhou’s protocol.

438The QNR computes both the spatial and spectral distortion from the quality

439index (Q) by Wang and Bovik (2002).

440This index combines the correlation coefficient with luminance and contrast

441distortion. It was devised for image fusion to assess the quality of output image, as

442well as for evaluating image processing systems and algorithms. Given an image X
443and its reference image Y, the quality index proposed by Wang and Bovik (2002) is

444calculated as:

Q ¼ 2mx þ my þ C1
� �

2sxy þ C2
� �

m2x þ m2y þ C1
� �

s2x þ sm2y þ C2
� � (4.6)

445Where C1 ¼ ðk1LÞ and C2 ¼ ðk2LÞ, mx and mymx indicate the mean of the two

446images X and its reference image Y, sx and sy are the standard deviation, sx, y
447represents the covariance between the two images, and L is the dynamic range for

448the image pixel values, k1 << 1 and k2 << 1 are two constants chosen equal to

4490.01 and 0.03, respectively.

450Although the values selected for k1 and k2 are arbitrary, it was experienced that

451the quality index is insensitive to variations of k1 and k2. Note that C1 and C2 are

452solely introduced to stabilize the measure. In other word, just to avoid the denomi-

453nator approaches zero values for flat regions.

454To measure the overall image quality the mean quality index can be rewritten as

455a three factor product, that can be regarded are relatively independent.

Q x; yð Þ ¼ f l x; yð Þ; c x; yð Þ; s x; yð Þð Þ

¼ ðsxy þ C3Þ
ðsxsy þ C3Þ

ð2mxmy þ C1Þ
ðm2x þ m2y þ C1Þ

ð2sxsy þ C2Þ
ðs2x þ s2y þ C2Þ (4.7)

456where C3 is a small positive constants as C1 and C2.

457In particular, among the three factor of Eq. 4.2, the first (varying between�1 and 1)

458represents the correlation coefficient between the two image x and y; the second

459(varying between 0 and 1) measures the similarity between the mean luminance

460values of x and Y, and finally, the third (varying between 0 and 1) measures the

461contrast similarity.

462The rationale The QNR (Quality with No Reference) index devised by Alparone

463et al. (2007) is that the Q index calculated between any two spectral bands and

464between each band and the Pan image should be unchanged after fusion. In order to

465obtain a single index, both the spectral and spatial distortion indices are
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466 complemented and combined together to obtain a single index that measures the

467 global quality of the fused image.

468 In detail, the spectral distortion is computed as follows:

469 The spectral distortion is obtained by computing the difference of Q values from

470 the fused MS bands and the input MS bands, re-sampled at the same spatial

471 resolution as the Pan image

472 The Q is calculated for each couple of bands of the fused and re-sampled MS

473 data to form two matrices with main diagonal equal to 1

474 The measure of spectral distortion Dl is computed by using a value proportional

475 to the p-norm of the difference of the two matrices.

Dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

L2 � L

XL
l¼1

XL
r ¼ 1

r 6¼ l

Q Ĝe; Ĝr

� �� Q ~Ge; ~Gr

� �		 		2
P

vuuuuut (4.8)

476 where L is the number of the spectral bands processed, and Q Ĝe; Ĝr

� �
denotes that

477 Q is calculated for each couple of bands of the fused and resampled MS data.

478 The spatial distortion is computed two times: (1) between each fused MS band

479 and the Pan image; and than (2) between each input MS band and the spatially

480 degraded Pan image. The spatial distortions Ds are calculated by a value propor-

481 tional to the q-norm of the differences

DS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL
l¼1

Qn Ĝl;P
� �� Qn

~Gl; ~P
� �		 		qq

vuut : (4.9)

482 where L is the number of the spectral bands processed, and Ĝl;P denotes the Q is

483 calculated between each fusedMSband and the Pan image, andQn Ĝl;P
� �

denotes the

484 Q is calculated between each input MS band and the spatially degraded Pan image.

485 Just as an example, we refer to an application related to an archaeological site in

486 Southern Italy (Lasaponara et al. 2007). It is Metaponto which was before a Greek

487 colony (700 BC–200 BC), then it was frequented by Romans (200 BC–400 AD).

488 QuickBird imagery has been used to identify and study linear features which

489 have been thought to ancient field divisions or other features of archaeological

490 interest. Such features are better visible from NIR channel respect to other channels.

491 To improve the details pan-sharpening has been carried out by using Gram

492 Schmidt, PCA and Wavelet Transform methods.

493 The NIR pan-sharpened products (Fig. 4.10) have been compared by visual

494 inspection by about ten colleagues including experts of remote sensing,

495 archaeologists and geophysicists. According the involved researchers Wavelet

496 pan-sharpening provides the best result in terms of visibility of archaeological

497 features.
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Fig. 4.10 Visualization of NIR pan-sharpened images obtained by using Gram Schmidt (upper),
PCA (medium) and Wavelet transform (lower) methods
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498 Then the same pan-sharpened dataset has been evaluated in a quantitative way

499 by applying the Wald and Alparone protocols. For both of them the best perfor-

500 mance was clearly achieved by using the wavelet-based data fusion (see Table 4.1).

501 4.11 Final Remarks

502 This chapter is composed of two parts, the first provided an overview of diverse

503 pan-sharpening techniques; whereas, the second part focused on the protocols

504 available for the numerical evaluation of performance.

505 The most common used methods are described in detail. In particular, we focused

506 the different methodological approaches, such as pan-sharpening techniques based

507 on: (i) arithmetic combinations (among them Multiplicative approach, Brovey trans-

508 formation, SVR); (ii) component Substitution (among them HIS, PCA and Gram-

509 Schmidt); (iii) Fourier Transform (Ehlers, HPF); (iv) Multiscale/multiresolution

510 (wavelet, Laplacian); (v) Artificial Neural Networks.

511 The simplest approach is the arithmetic combination of different scenes

512 performed at the pixel level. The CS fusion method is based on diverse types of

513 transformations which are applied to synthetise a Pan image, later substituted by the

514 real pan and, finally, the application of the reverse transformation provides the

515 fused products. The pan-sharpening techniques based on the Fourier Transform

516 extract the high frequency components from the PAN image (using a high pass

517 filter) and inject them into low frequency components of the multispectral images.

518 Multiscale/multiresolution approaches split the spatial information of the MS bands

519 and Pan image into a series of band-pass spatial frequency channels. The high

520 frequency channels are inserted into the corresponding channels of the interpolated

521 MS bands. In the pan-sharpening based on Artificial Neural Networks the images

522 are firstly decomposed into several blocks, later features are extracted from the

523 original Pan and MS scene and finally the training step is carried out.

524 Moreover we also highlighted the protocols in use for the numerical comparison

525 and evaluation of different approaches, in terms of spectral fidelity and spatial

526 resolution performance.

t1:1 Table 4.1 Evaluation of three pan-sharpening NIR channels by using the Wald and Alparone

protocols

Wald protocol Bovik score index
Alparone protocolt1:2

Pan-sharpening method I component II component III component Q QNR score indext1:3

Gram Schmidt 0.508 0.999 0.506 0.257 0.632t1:4

PCA 0.727 0.886 0.640 0.413 0.673t1:5

Wavelet 0.773 0.999 0.769 0.595 0.863t1:6
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527The visual inspection is not enough to compare results obtained from different

528algorithms but automatic quality assessment is highly desirable to evaluate perfor-

529mance and benefits of Pan-sharpening techniques. Considering that archaeological

530features are characterized by quite subtle signals, It clearly shows that the quantita-

531tive evaluation of performance from pan-sharpening methods is a critical issue for

532archaeological applications.

533Nowadays, several mathematical methods have been adopted to evaluate the

534quality of merged imagery (i) Specific protocols for quality measures such as well

535as (ii) Statistical indices, such as cross entropy, mean square error, and signal-to-

536noise ratio. Nevertheless, up to now analytical studies of these measures are still

537lacking. New performance assessment criteria and automatic quality assessment

538methods will be addressed in future research.

539Moreover, specific context-adaptive indices need to be developed, because

540outputs from the existing evaluation procedures cannot fit the specific requirement

541of cultural features sharpening. Although the application of pan-sharpening

542techniques for enhancing cultural features is a quite recent topic, we would like

543to point out their potentiality for improving the identification of unknown archaeo-

544logical buried structures.
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