
Chapter 3

Pattern Recognition and Classification Using
VHR Data for Archaeological Research

Rosa Lasaponara and Nicola Masini

Abstract The extraction of the huge amount of information stored in the last

generation of VHR satellite imagery, is a big challenge to be addressed. At the

current state of the art, the available classification techniques are still inadequate for

the analysis and classification of VHR data. This issue is much more critical in the

field of archaeological applications being that the subtle signals, which generally

characterize the archaeological features, cause a decrease in: (i) overall accuracy,

(ii) generalization attitude and (iii) robustness. In this paper, we present the methods

used up to now for the classification of VHR data in archaeology. It should be

considered that: (i) pattern recognition and classification using satellite data is a

quite recent research topic in the field of cultural heritage; (ii) early attempts have

been mainly focused on monitoring and documentation much more than detection

of unknown features. Finally, we discuss the expected improvements needed to

fully exploit the increasing amount of VHR satellite data today available also free

of charge as in the case of Google Earth.
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3.1 Introduction

The VHR satellite data, today available at a spatial resolution less than 1 m,

enables us to extract spectral/spatial pattern, geometric properties, along with

other detailed information useful for a number of different application fields

spanning from vegetation, mapping (Desclée et al. 2006; Lasaponara and Lanorte

2006), environmental monitoring (see for example Pulvirenti et al. 2011), urban

expansion, cadastral mapping (see for example Pacifici et al. 2009; McFeeters

1996) and archaeology (see for example, Ciminale et al. 2009; De Laet et al. 2007).

In the field of archaeological investigations as for other applications, information

retrieval and knowledge improvements are based on the extraction and analysis of

what is generally hidden in the processed data sets. Moreover, informative content

is not only stored in the diverse variables (i.e. pixel) but it generally spreads out all

over the data sets and therefore can be unveiled by analysing spatial relationships

between the single variables (and/or pixels) and their neighboring areas (spatial

analysis).

To extract information from imagery we may use different methodological

approaches and transformations which must not alter the informative content but

it should make the information easier to manage for data analysis and clearer for

interpretation.

Remote Sensing technologies acquire and provide measurements of electro-

magnetic energy from distant targets thus enabling the extraction of information

about features, objects, and classes on the Earth’s land surface. The interpretation

of geospatial data is possible because objects made of diverse materials emit

and/or reflect a different quantity of energy in diverse regions of the electromag-

netic spectrum. Considering multispectral images, each pixel has a set of spectral

values and therefore it can be represented as a vector in a multi-dimensional space

whose axes correspond to the given image band in the multi-spectral image space.

Therefore, on the basis of spectral content we can identify and categorize the

diverse surfaces (soil, vegetation, sea), materials (soil types, vegetation cover types,

concrete) and objects (urban areas, archaeological feature) by classes or types,

substance, and spatial distribution according to their specific characteristics (fresh

snow, senescent vegetation, clear water, moisture content, grain size). The different

spectral responses observed for diverse materials according to their characteristics,

is generally known as spectral signatures.

Figure 3.1 shows some examples of spectral signatures observed for vegetation

and soil and for different status of vegetation. Please note from the visible (around

0.50 nm) to short wave spectral range (to 2.50 nm) the diverse spectral responses

which characterize and enable the discrimination between the vegetation and soil as

well as between green and dry vegetation. Of course, the graph exhibits the

expected spectral response for the various targets under observation, obviously

what is observed in reality is quite similar but with some differences due to the

atmospheric contamination (cloud, aerosol, etc), view angle geometry, etc. All the

pre-processing steps tend to reduce the contamination and noise.

66 R. Lasaponara and N. Masini



Figure 3.2 show the variations of spectral response of vegetation according to the

variations in moisture content. Increase of moisture content generally produces a

decrease in the spectral response due to the absorption of water. Figure 3.3 shows a

similar behaviour also for silty soil, an increase in moisture induces a decrease in

spectral response.

Pattern recognition and, in turn, image classification techniques have the overall

objective to automatically or semi-automatically categorize all pixels of given

scenes into known (pre-defined) or unknown (non predefined) classes or themes.

The spectral pattern, or signature, of surface materials determines the assignment of

given pixels to a specific class or category. One of the main purposes of satellite

remote sensing is to carry out quantitative analysis to better interpret the observed

data and classify features. Classification can be performed on pixel or object based

using single or multiple image channels to identify and group pixels/object

according to their spectral and /or shape characteristics. Over the years a number

of different classification techniques have been devised, but the availability of

VHR data has drawn considerable attention to the need of improving the capability

Fig. 3.1 Soil and vegetation

spectral signatures

Fig. 3.2 Variations of

vegetation spectral signatures

according to different

moisture contents
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in feature extraction. Classification techniques can be grouped according to their

specific characteristics as follows:

• unsupervised (self organizing);

• supervised (training);

• hybrid (self organization by categories);

• spectral mixture analysis (sub-pixel variations);

and

• parametric classification, based on statistical parameters (mean & standard

deviation);

• non-parametric classification approach, based on objects (polygons) in feature

space;

• decision rules classification: it rules for sorting pixels into classes.

One of the most widely used categorizations is: (i) unsupervised (automatic data

processing) and (ii) supervised (semi-automatic data processing). The unsupervised

classification techniques are performed without any prior knowledge of the image.

Pixels are grouped into a pre-defined number of classes, according to their reflec-

tance features.

The main important difference between unsupervised and supervised classi-

fications is the fact that the latter requires a prior knowledge of the considered

classes and a stronger user interaction being a semiautomatic methodological

approach.

Two are the basic steps in supervised classifications: (i) clustering or training

which consists in providing known areas for each class, generally identified through

in situ analysis, (ii) classification which is carried out by comparing the spectral

signature to each pixel (under investigation) with the spectral signature of the

training cluster.

Fig. 3.3 Variations of silty soil spectral signatures according to different moisture contents
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A parametric classification is carried out on the basis of parametric signatures

defined by statistical parameters (e.g., mean and covariance matrix) and attributes,

such as, the number of spectral bands, mean, minimum and maximum value in

each band, as well as the number of pixels and covariance matrix for each training

cluster. Some examples of parametric classification tools are: (i) Minimum dis-

tance, (ii) Mahalanobis, (iii) Distance Maximum Likelihood.

A non-parametric classification is carried out using non-parametric signatures

obtained in the n-dimensional feature space image considering n as the number of

the spectral bands. A pixel is assigned to a given class according to its location,

inside or outside the area in the feature space image. Among the non-parametric

classification techniques we cite: (i) parallelepiped and (ii) feature space.

One more categorization is: (i) per pixel classification and (ii) object oriented

classification (Bhaskaran et al. 2010; Hofmann 2001). In the latter, the spectral

information is analysed jointly with various shape measurements, namely polygons,

whose spectral and spatial attributes are the input of “traditional classifications”.

The object extraction can provide a greater number of meaningful features for the

classification step and assures more flexibility and robustness. Object oriented

classification is generally based on three steps: (i) the object extraction, (ii) seg-

mentation and (iii) classification via a variety of classification techniques.

Nevertheless, it should be considered that pattern recognition and classification

using satellite data is a quite recent research topic in the field of cultural heritage.

Early attempts have been mainly focused on monitoring and documentation much

more than detection of unknown features.

Trelogan (2000) classified Landsat images for urban sprawl monitoring using a

semiautomatic method to assess the development of urban pattern close to an

archaeological area.

Semiautomatic classifications of above ground archaeological remains have

been carried out through pan-sharpened multispectral Ikonos images by De Laet

et al. (2007). They used and evaluated the performance of different supervised

classification methods, spanning from pixel based techniques, such as SAM, Paral-

lelepiped, Minimum Distance, Maximum Likelihood, to the object based method

implemented in the eCognition software (eCognition 2002). This procedure is

based on three step analyses: (i) firstly, a segmentation stage provides spectral

homogeneous regions, also considering shape and scale (Baatz and Schape 2000);

(ii) secondly, the training stage is performed on the outputs from the segmentation,

(iii) classification. In De Laet et al. (2007), the comparison of different methods was

not objectively conducted, but only using visual analysis, which does not provide

numerical results. The authors concluded that, as a whole, all the procedures they

adopted were not capable to provide a unique class for archaeological structures on

the site of Hisar (southwest Turkey). All the considered classification techniques

were supervised methods and, therefore, not automatic but semiautomatic because

all of them require a strong user-interaction mainly for the selection of training

areas along with the definition of parameters for the classification step.

A similar approach based on the segmentation and classification also

implemented in the ecognition and/or in similar commercial software (as ENVI)

was applied by Jahjah and Ulivieri (2010) to the excavated archaeological remains
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of Nisa (Turkmenistan) and Babylon (Iraq) for a semiautomatic mapping of urban

fabric. The authors highlighted that the results obtained from both ecognition and the
similar approach from ENVI were strongly linked with the operator intervention and

generally many archaeological elements were misclassified and not well defined in

terms of accuracy. By contrast, results from the fully automatic methodology based

on the Mathematical Morphology outperformed the other considered methods.

Good results from automatic classification addressed to crop and soil marks

detection were obtained in Ciminale et al. (2009). The main aim of this study was

the detection of circular features related to ditches and compounds of some Neo-

lithic settlements in Apulia (southern Italy). The authors applied unsupervised

classifications to IKONOS and SPOT previously processed by Global and Local

geospatial analysis. Actually this was one of the first attempts addressed to a fully

automatic identification of archaeological marks linked to buried cultural remains.

Aurdal et al. (2006) also focused on crop and soil marks classification but with

quite unsatisfactory results.

3.2 Unsupervised Classification Algorithms

Unsupervised classification only requires a limited human intervention to have

the foreknowledge of the classes. The importance of applying unsupervised classi-

fication in archaeological applications is that: (i) it is an automatic process, namely,

it normally requires only a minimal amount of initial input, compared to supervised

data set; (ii) classes do not have to be defined a priori; (iii) unknown classes may be

discovered.

A number of unsupervised classification algorithms are commonly used in

remote sensing, among them we outline (i) K-means clustering, (ii) ISODATA

(Iterative Self-Organizing Data Analysis Technique), (iii) Migrating Means clus-

tering Classifier and (iv) Mathematical Morphology based methods. ISODATA and

K-means are quite similar algorithms. In both of them the user has only to indicate

(i) the number of the predefined classes (clusters) and (ii) the iterations to be carried

out. The only difference is that the K-means assumes that the number of clusters is

known a priori whereas the ISODATA algorithm assigns “dynamically” the differ-

ent number of clusters. These algorithms are iterative procedures, based on the

following steps: (i) they first assign an arbitrary initial cluster vector, (ii) each pixel

is classified to the closest cluster, (iii) new cluster mean vectors are calculated based

on all the pixels in one cluster. The second and third steps are iteratively repeated

until the “variations” between the iteration is small. Such variations can be

computed and assessed in several different ways. For example, in the K-means

algorithm, the cluster variability is optimized by minimizing the sums of square

distances (errors) expressed by Eq. 3.1.

MSE ¼
P ½x� CðxÞ�2

ðN � cÞb (3.1)
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where N is the number of pixels, c indicates the number of clusters, and b is the

number of spectral bands, C(x) is the mean of the cluster that pixel x is assigned to.

Equation 3.1 clearly shows that the minimization of MSE implies that K-means

works best for spherical clusters that have the same variance. This indicates that

K-means algorithm tends to perform better for homogeneous surface/object as

desert area, but it is quite unreliable for heterogeneous surfaces such as forest cover.

The ISODATA algorithm merges or splits clusters if, respectively the number

pixels belonging to a given cluster is less than a certain threshold or if the centers of

two clusters are within a threshold. ISODATA algorithm is considered more

flexible compared to the K-means method, but it requires the empirical selection

of many more parameters.

Both ISODATA and K-means algorithms may meet several problems. For

example, for both of them the resulting classifications depend to a large degree

on the arbitrary selection of initial parameters. This also leads to another inconve-

nience which is the so-called “reproducibility of classification”. One more limita-

tion is the fact that the number of clusters usually must be fixed a priori, and
the problem is that it may not be known. Moreover, the spectral properties of

specific targets, objects, classes are variable over seasons. Therefore, results cannot

be directly transferred to other periods of the year or geographic areas. One more

drawback of the unsupervised classifications is that some spectral clusters may

be related to mixed classes of Earth surface materials and therefore physically

meaningless. The analyst must know well enough the spectral behaviour of differ-

ent targets to be able to identify specific information.

Figure 3.4 shows some results from the ISODATA classification obtained for

Palmori which is a Neolithic archaeological area close to Foggia (Southern Italy).

The typical circular and semicircular shapes of the compounds of the Neolithic

sites are easily recognizable. Figure 3.4 shows a zoom of a test area selected in

particular: (a) orthorectified aerial image (b) QuickBird image, (c) satellite image

Fig. 3.4 Zoom of a test area selected in Palmori site: (a) orthorectified aerial image (b) QuickBird
image, (c) satellite image enhanced by applying Gaussian (c) and equalization method (d). Results
from ISODATA performed on the full scene (e) and on the subset (f )
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enhanced by applying Gaussian (c) and equalization method (d). Figure 3.4e–f

show the results from ISODATA performed on the full scene (e) and on a subset (f).

The red class of Fig. 3.4e obtained from the ISODATA performed on the full scene

is quite similar to the blue class of Fig. 3.4f obtained by only processing a subset of

the whole scene.

Figures 3.5a–f show results obtained from K-means classification applied to

Heraclea a Roman archaeological area in the Basilicata Region (Southern Italy). It

is a Roman excavated town with above ground remains which clearly shows the

typical roman urban layout composed of orthogonal streets (the so-called cardus

and decumanus). The K-means classification was applied to a QuickBird panchro-

matic scene (Fig. 3.5a) considering both 6 and 5 classes (Fig. 3.5b–c, respectively).

Before vectorialization step aimed at extracting the urban fabric, post classification

procedures have been used to improve results from classification. Both majority

analysis and clump were applied as implemented in the ENVI software

Fig. 3.5 (a) PAN; (b) K-means 6 classes; (c) K-means 5 classes; (d) post classification: major

analysis; (e) post classification: clump; (f ) vectorialization
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(see Figs. 3.5d and e, respectively). The majority analysis enables us to manipulate

the spurious pixels remaining in a given class by using a kernel. Whereas, the

second post classification elaboration removes spatial incoherency, such as

speckle or holes in classified areas by clumping adjacent similar classified areas

together applying morphological operators by using a kernel of a given size.

The morphological operators first perform a dilate operation and then an erode

operation on the classified image. Note that, in this case the use of morphological

operators is recommended to smooth these images instead of low pass filtering,

whose application could contaminate the class information by adjacent class

pixels. Finally, the vector (see Fig. 3.5f) is obtained from the clump outputs.

The whole data processing from the classification to the vectorialization is

completely automatic.

The most important implication of these promising results is the possibility of

searching for archaeological features using an automatic processing tool. In such a

way it should be possible to significantly reduce the amount of time and costs

needed for field walking and ground detection. Vast geographical areas may be

investigated using multispectral imagery to extract potential archaeological and

palaeo-environmental features.

3.3 Spectral Separability Measures

It is possible to have a measure of the “spectral distance” (see for example Thomas

et al. 1987) generally called separability between two or more spectral classes using

specific numerical evaluation. There are a number of diverse separability tests

useful to (i) determine the similarity/dissimilarity of two distributions, (ii) assess

the type of distribution of data under investigation, (iii) discriminate the ability of

an index or technique in separating and detecting distinct classes, (iv) evaluate if

the separablity is statistically significant. Among the existing methods we list the

following:

(i) Measures which look at the distance between class using means:

• Euclidean and Non-Euclidean Distances

• Divergence

(ii) Measures which look at both the differences between class means and the

distribution of the values about those means (i.e. noise), such as:

• M statistic,

• JM Distance,

• Bhattacharyya Distance.

Some methods only work with one band at a time (e.g. Euclidean Distance,

M statistic), while others can work on any number of bands (e.g. JM Distance).
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The use of spectral separability can be very useful in archaeological application

for many purposes, such as pre-processing to understand the performance of a given

supervised classifier, to evaluate the capability in discriminating one class from the

others (surface, shallow and buried archaeological features), to assess the perfor-

mance of supervised classifiers.

A quantitative evaluation of spectral separability of archaeological marks and

their surroundings was carried out by using one of the most widely used indices, the

Jeffries–Matusita distance, by Lasaponara and Masini (2007), defined as follows:

• The Jeffries–Matusita (JM) distance is obtained from the Bhattacharyya distance

(BD), shown in Eq. 3.2. Both JM and BD were devised to measure the statistical

distance between two Gaussian distributions.

BD ¼ 1

8
ðmb � mnbÞT

Sb þ Snb

2

� ��1

ðmb � mnbÞ þ
1

2
ln

"
Sb þ Snb

2

����
����
#

Sb Snbj jj jð Þ12
#" (3.2)

Where mb and mnb are the mean of two classes (namely archaeological features and

non archaeological features) and
Pb

and
Pnb

are the covariance matrix for the

same classes.

Please, note that the first part of Eq. 3.2 represents the mean, whereas the second

part is the covariance difference. BD should be as high as possible. A drawback of

the Bhattacharya distance is that it does not provide any indication of threshold

values for separability

JM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� e�BDð Þ

p
: (3.3)

where BD is Bhattacharya distance computed using formula 3.2

• The JM distance has an upper boundary of 1.41 (2), and a lower boundary of 0.

• The JM distance is asymptotic to the value 2 for increasing class separability.

A value of 2 for JM distance would imply that the classification will be

performed with 100% accuracy.

• When the calculated distance is zero, the signatures can be said to be totally

inseparable.

Along with the Bhattacharrya (or Jeffries-Matusita) Distance there is also the

Transformed Divergence which can be used to estimate the spectral separability

between distributions. It is defined in formula 3.4

TDij ¼ 2000 1� e
�Dij
8ð Þ� �

(3.4)
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where i and j are the two signature classes being compared and Dij

Dij ¼
tr Ci� Cjð Þ C�1

i � C�1
j

� �� �
þ C�1

i � C�1
j

� �
mi � mj
� 	

mi � mj
� 	T� �

2
(3.5)

Where:

Ci is the covariance matrix of signature I, mi is the mean vector of signature I,

tr is the trace function (matrix algebra), and finally T is the transposition function.

As for Bhattacharrya Distance also the Transformed Divergence ranges between

0 and 2, where 0 indicates the complete overlap between the signatures of two

classes and 2 indicates a complete separation between the two classes.

Among the other distances we focus on the “statistically Mahalanobis Distance”

different from the Euclidean distance which assumes that all the components of a

given observation and/or spectral space contribute equally to the Euclidean distance

of the observation from the center. Differently from the Euclidean distance, the

Mahalanobis Distance also considers the variability of the given parameters and

correlation between them.

In theMahalanobisDistance (i) componentswithhighvariability receive lessweight

than components with low variability; (ii) being that correlation means that there are

associationsbetween the variables, it is consideredby rotating theaxes of ellipsoid.This

yields the following general form for the statistical distance of two points.

MD x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð Þt S�1 x� yð Þ

q
(3.6)

where x and y are the two points

ds x; oð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt S�1x

p
is the norm of x (3.7)

Within the classification process Mahalanobis Distance is used to evaluate the

spectral separability among the areas considered as the training data set used for the

learning process.

Lasaponara and Masini (2007) carried out statistical evaluation of spectral

capability of satellite QuickBird data in detecting buried archaeological remains.

Cavalli et al. (2009) devised a spectral separability index specifically for archae-

ological features

SI ¼ 1�
R
Dmarks Dbackground dxR

D2
marks dx

R
D2

background dx

 !
� 100 (3.8)

Where, Dmarks represents the frequency distribution of the digital values of those

pixels belonging to the archaeological spectral anomalies in all images, similarly

for the Dbackground corresponding to the frequency of pixels selected as background.

3 VHR Satellite Based Pattern Recognition and Classification 75



3.4 Supervised Classification Algorithms

The supervised classification algorithms require a preliminary knowledge neces-

sary: (i) to generate representative parameters for each class of interest; and (ii) to

carry out the training stage.

Over the years a number of algorithms have been developed for satellite data

processing and, recently, the availability of VHR images has strongly pushed the

implementation of new approaches to fit the complex need linked with the huge

amount of geometrical and spectral information stored in VHR data.

Among the “traditional” supervised classifications the most common are:

(i) Maximum Likelihood Classifier (MLC), which is based on the evaluation of

variance and co-variance for each class to assign a pixel to one of them

according to the highest probability (see for example Kiema 2002).

(ii) Minimum-Distance to the Mean-Classifier, which is based on the evaluation of

mean values for each class to assign a pixel to one of them, according the

minimum values of Euclidian Distance

(iii) Parallelepiped Classifier which is based on the evaluation of a mean vector

(instead of a single mean value) which contains an upper and lower threshold

to assign a pixel to a given class or to disregard it as unclassified or null

category.

(iv) Mahalanobis Distance classification which is based on the evaluation of the

variance and co-variance similarly, but it considers all class covariances equal

and all pixels are included in the closest class by threshold values, otherwise

they may be unclassified.

(v) Spectral Angle Mapper algorithm (SAM) which is based on the spectral

similarity measured by calculating the angle between the training and the

under investigation spectra, considered as vectors in n-dimensional space,

where n is the number of bands (Kruse and Lefkoff 1993).

In the following we will focus on MLC and SAM, because they are the most

common for multispectral and hyperspectral data sets, respectively.

MLC is one of the most commonly used supervised classification algorithms.

It assumes that each spectral class can be described by a multivariate normal

distribution. The effectiveness of MLC depends on reasonably accurate estimation

of the mean vector m and the covariance matrix for each spectral class data

(Richards and Xiuping 1999).

The MLC (Lillesand and Kiefer 2000), as with other conventional hard classi-

fication techniques, assumes that all image pixels are pure. Nevertheless, this

assumption is often untenable according also to the scale and spatial resolution of

the investigated data sets. As an example, in mixed land cover compositions,

as pixels increase in size, the proportion of mixed cover type distributed at pixel

level will likewise increase and information at the sub-pixel level (Buck et al. 2003)
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will be of increasing interest. Consequently, in pixels made up of a mixture of

features, conventional “hard” image classification techniques provide only a poor

basis for the characterization and identification of features giving, in the best case,

a compromised accuracy, or, in the worst case, a totally incorrect classification.

In these conditions, the use of SMA can reduce the uncertainty in hard classi-

fication techniques since it is able to capture, rather than ignore, sub-pixel hetero-

geneity. The SMA allows for classifying the proportions of the different

feature types (end-member classes) covered by each individual pixel. End-member

classes can be taken from “pure” pixels within an image or from spectral libraries.

Over the years, different models of spectral mixtures have been proposed.

Among the available models, the most widely used is the Mixture Tuned Matched

Filtering (MTMF) by Ichku and Karnieli (1996) that is based on the assumption that

the spectrum measured by a sensor is a linear combination of the spectra of all

components within the pixels.

For archaeological applications some improvements may be expected in the case

of Landsat TM or ASTER data (Abrams 2000), but the use of SMA for the VHR

data generally should not exhibit significant variations in terms of accurracy and

extracted details, apart the case of the scattering of pottery. In these conditions,

geospatial analysis should be much more useful along with a pre-processing step

oriented to sharpen the features to be extracted and to make them easier to identify.

Among the supervised classifications we briefly describe Spectral Angle Map-

per, because it can be used for hyperspectral data processing. SAM compares image

spectra to a known spectra or an endmember. The reference spectra can be directly

obtained from field measurements, extracted from the image or taken from a

spectral libraries. SAM treats both (training and unknown) spectra as vectors and

calculates the spectral angle between them, using formula 3.9

u � v ¼
Xn
i¼1

ðuiviÞ ¼ uv � cosa (3.9)

where ui e vi are the components of the vectors u e v in in n-dimensional space. So

the angle between the spectra is calculated with the following equation:

a ¼ arccos
u � v
uv

¼ arccos

Pn
i¼1 ðuiviÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 u
2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 v

2
i

p
 !

(3.10)

The a angle is in the range from zero to p/2.
High angle differences indicate high dissimilarity between the two spectra and

vice versa low angle difference indicate low dissimilarity between the two spectra.

Please note that SAM algorithm uses only the vector direction and not the vector

length, thus assuring low sensitiveness to illumination conditions.
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3.5 Classification Based on Supervised Learning Methods

3.5.1 Artificial Neural Networks

Today, the term neural network indicates a large class of classifications, regression

and learning methods which exploit the basic idea of extracting linear combinations

of the input layers (including multispectral images) to derive features and later use

them to model the target as a nonlinear function of these features. Over the years a

number of paper have been published in the topic. About the resurgence of Neural

Networks in the mid 1980s we suggest the works of Werbos (1974) and Rumelhart

et al. (1986).

The artificial neural networks (ANNs) act at the feature level mainly exploiting

the pattern recognition capabilities of the ANN.

ANNs is a supervised classification process where the net is trained on a set of

input regions of interest (ROIs). The neural networks gained popularity in the

1980s, and were extensively applied in many fields. In the early 1990s, the neural

networks were applied to remotely sensed data since Werbos and Rumelhart

developed a new learning scheme, based on the concept of a back-propagation

algorithm.

From a theoretically point of view, ANNs can achieve an accurate result and,

at the same time, assure a high generalization capability. The main advantages of

the neural networks compared with the conventional classifiers are mainly linked

to the fact that, they: (i) do not require previous knowledge about the distribution of

the data; (ii) can adapt themselves to any type of data; (iii) can successfully deal

with non-linear data patterns.

Nevertheless, the practical use of ANNs poses several problems. Firstly, a large

variety of possible network architectures, setup parameters, and training

algorithms. Secondly, possible bad choices of the above mentioned factors can

provide erroneous results or affect subjectively the generalization capability.

The ANNs classifier approach adopted in this paper is fully described in

Richards and Jia (2006) and implemented in ENVI routines. ANN is considered

as a mapping device between an input set and an output set. The basic processing

node in the ANNs is an element with many inputs and a single output.

The performed operation is described by relation 3.11:

0 ¼ f ðw0xþ yÞ (3.11)

Where y is a threshold, w is a vector of weighting coefficients and x is the vector of
inputs. The most common expression for the function f is that reported in

formula 3.12.

f ðzÞ ¼ 1

1þ e�z=y0
(3.12)
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Where the argument z is w0xþ yð Þ and y0 is a constant, which is usually set

at value 1. This leads 1 for z large and positive, and 0 for z large and negative.

The threshold y takes the place of the weighting coefficients. The outcome of the

product w0x is a scalar.
In the case of remote sensing data processing, the inputs are the satellite band

images. The number of the input variables to a node will be defined by the network

topology as well as data dimensionality. The ANNs used in the field of remote

sensing data analysis can be schematized as:

(i) an input layer of nodes, which has the function of distributing the inputs to the

processing elements of the next layer and scaling them if necessary;

(ii) an output layer from which the class labelling information is provided

(Fig. 3.6).

One of the basic steps of the ANNs is the training process. For supervised

learning, the Neural Net technique uses standard backpropagation. In order

to minimize the difference between the output node activation and the desired

output, learning is achieved by adjusting the weights in the node. The error is

backpropagated through the network and weight adjustment is made using a

recursive method.

The learning capability of ANN enables us to customize the image classification

process. This can be time consuming and computationally complex compared with

other standard classification techniques.

ANN-based fusion methods have more advantages especially when input data

are obtained from multiple sensors, such as active and passive sensors (Radar and

Fig. 3.6 Neural network is a

two-stage classificationmodel.

The top level is defined

according to the number of

classes considered, as an

example, in the case of K-

classes, we have K units in the

top level, with the kth unit

modelling the probability

of class k. There are K

target measuments Yk, k ¼ 1,

2, . . . ,K, each being coded as
0–1 variable for the kth class.

Derived features (the hidden

level) Zm are created from

linear combinations of the

inputs and then the target Yk is

modelled as a function of

linear combinations of the Zm
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VHR satellite images). Moreover ANN is quite efficient for classifying high

dimension data, such as hyper-spectral or long-term time-series data.

3.5.2 Support Vector Machines

In the last 10 years, SVMs (Support Vector Machines) have shown a great potential

for data classification also in satellite data processing (Mountrakis et al. 2011).

They are non parametric classifiers which show a great ability to optimize classi-

fication issues, minimizing the empirical classification errors while maximizing

the class separations. The main objective is to generalise the problem avoiding

overfitting. SVMs produce a model, based on the training data set, to predict the

target values of the test data given only the test data attributes.

As in other supervised classifications the first step is the training, which involves

the random separation of datasets into training and testing subsets. Please note that

if there are categorical attributes, they must be first converted into numeric values.

For example, in the case of a three-category attributes such as red, green, blue,

the vectors for their numerical representation may be (0,0,1), (0,1,0), and (1,0,0).

More in general, each example consists of a n number of data points (x1,. . . xn)
followed by a label (or target). For two classes will be +1 or �1 representing,

for example, archaeological or non-archaeological features. The given classes must

be separated by an optimum hyperplane, as illustrated in Fig. 3.7. This hyperplane

must minimize the distance between the closest +1 and �1 points (called support

vectors) and maximise the margin between the two classes. This is known as the

optimum separating hyperplane.

We can first consider a linear separation which enables us to start in the simplest

way and to add complexity later by using kernel functions.

Fig. 3.7 Separating hyperplane is shown for a linear separation which enables us to start in the

simplest way without losing generality
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Considering Fig. 3.7, the separating hyperplane is defined as follows: (i) the

normal vector w and (ii) – the offset b:

hyperplane ¼ fx<w; x>þ bg

Where < w,x > is called inner product, scalar product or dot product.

In the training step w and b must be chosen from the labelled examples in the

training set. The training must enable us to carry out the right prediction, namely on

which side of the hyperplane a new point will lie. Considering Fig. 3.7, points lying

in the right side are classified as positive, and viceversa points in the left direction

are classified as negative. Note that the best hyperplane is “a fat plane”, which

separates the training set with maximal margin (see Fig. 3.7).

Support Vectors are the points nearest to the separating hyperplane, (which

determine the position of the hyperplane), whereas all other points are non influent.

From the mathematical point of view the weighted sum of the Support Vectors is

the normal vector of the hyperplane.

In the case of non-separable training sets, SVM still considers linear separation,

but admits training errors, which are measured as the distance to hyperplane

multiplied by an error cost C. If it is not possible to reduce the penalty error,

the separation may be easier considering higher dimensions. In this condition,

a maximal margin hyperplane, there must be built as depend on inner products

and, in the cases of very large dimensions, it cannot be manageable from the

computational point of view. To overcome this drawback, the use of a kernel

function enables us to maintain low dimensions, having performance (of an inner

product) as in high dimensions. In this way, it is not necessary to know what the

feature space really looks like, but it is enough to know outputs from the kernel

function as a measure of similarity. Kernel methods received great attention in

recent years. Initially they were used to face non-linearity within the SVM method.

The idea behind them is very simple, but also very powerful. To classify two

datasets which are not linearly separable it is possible to define a mapping function

f ðxÞ : Sn ! Sm and work in the transformed space, at the cost of the transformation.

SVMs (and many other linear algorithms) depend on data only through their inner

products.

So if a method to evaluate directly the inner product of the mapped points can be

found, without explicitly knowing the mapping, the problem becomes easier to

solve. The use of Kernels makes this possible.

Diverse kernel functions may be adopted, such as

(i) nonlinear k p; qð Þ ¼ <p; q>,

(ii) polynomial k p; qð Þ ¼ g<p; q>þ coð Þd,
(iii) radial basis function k p; qð Þ ¼ e�g p�qj jj j2 , etc.

As a whole, a Support Vector Machine is a maximal margin hyperplane in

feature space built by using a kernel function in spectral space. The selection of

SVM kernel classifier (along with kernel parameters) is considered as one of the
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most important steps in the implementation of SVM classifier. Lower the number

of parameters to be defined, higher the robustness of the SVM implementation.

3.6 Hybrid Classifiers and Accuracy Evaluation

Archaeological features linked to buried settlements are really complex and tradi-

tional techniques, as a pixel-based classification, may be not effective. Traces of

archaeological remains include different features which cannot be characterized

by any specific color or tone of gray in the image, but rather by their heterogeneity.

Archaeological marks (crop, soil, shadow) are very easy to extract in a visual

photointerpretation process, but their heterogeneity makes their automatic or

semi-automatic classification very difficult. To cope with this drawback, a pre-

classification step may be necessary to make their classification easier. It is really

important before running the classifier to make archaeological feature pattern easily

recognizable, using spatial and/or spectral enhancement as, for example, feature

extraction (PCA, TCT, spectral indices), spatial filtering, including mathematical

morphology, whose outputs may be further processed using geospatial analysis to

be later profitable classified (see for example Giada et al. 2003).

Mathematical morphology includes a big number of different operators, span-

ning from the simplest erosion or dilation, to the more complex, such as geodetic

transformations or hit-and-miss transformations (see Chap. 2 and reference therein

quoted).

Being that we firstly must know the shape to be recognized we may include the

classifiers based on mathematical morphology inside the supervised classification

category, but it must be noted that automatic procedures may run without any

preliminary knowledge about the data set.

The use of a hybrid approach classification, that combines supervised and

unsupervised, as well as pixels and objects, geometric shape and spectral feature

characteristics, may provide improved performance also for scenes that contain a

variety of subtle features.

Of course, diverse classifiers produce different results which must be evaluated

using specific metrics.

In the case of unsupervised classifications it is not possible to evaluate accuracy

and performance being that we have no training target to use as a basis data-set for

numerical evaluations. Whereas, in the supervised classifications, we have a train-

ing data-set, sometimes called Region of Interest (ROI) which can be used to

measure the achieved performance. First, we have to randomly divide the database

into separate subsets: training and test samples. A common rule of thumb is to use

70% of the database for training and 30% for testing. It is absolutely important to

measure the performance of a classifier using an independent balanced test set

(number of samples in different classes very close to each other). When a data set is

unbalanced the error rate of a classifier is not representative of the true performance

of the classifier.
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The accuracy of a classification process is generally carried out by comparing

the classification results with ground truth or ROIs information.

A confusion matrix (contingency matrix) is generally considered and some

“traditional” figures, below listed from (i) to (iv), are commonly used:

(i) The producer’s accuracy is a measure indicating the probability that the

classifier has correctly labelled an image pixel.

(ii) The user’s accuracy is a measure indicating the probability that a pixel belongs

to a given class and the classifier has labelled the pixel correctly into the same

given class.

(iii) The overall accuracy is calculated by summing the number of pixels classified

correctly and dividing by the total number of pixels.

(iv) Finally, the kappa statistics (K) can be also considered. It measures the

increase in classification accuracy over that of pure chance by accounting

for omission and commission error (Congalton and Green 1999). Overall

accuracy is computed as the sum of the number of observations correctly

classified (class1, as class 1, class 2 as class 2, etc.) divided by the total number

of observations. This is equivalent to the “diagonal” of a square contingency

table matrix divided by the total number of observations described in that

contingency table.

Apart from the accuracy we can use other figure metrics to evaluate the perfor-

mance of a classifier. As a whole, we can state that along with the accuracy one

more widely used estimation is the robustness.

The classification accuracy also known as “predictive capability” refers to the

ability of the classifier to correctly predict the class label of new or previously

unseen data. The robustness is the ability of the classifier to model correctly and

make right predictions also for noisy data or datasets with missing values. In the

case of method based on machine learning, there are many specific metrics to

evaluate performance, spanning from, log likelihood, mean squared error, 0/1

accuracy, and many others.

The reference quality as well as the optimization issues are domain-dependent

and application-specific. In the case of archaeological application we can state that

the quality of a pattern extraction methodology as well as the optimization of a

given classifier is given by the possibility to reliably discriminate subtle archaeo-

logical features from their neighboring areas and this mainly lies in the capability to

filter out and/or obscure background of archaeological features to enhance traces of

past human activities still fossilized in the modern landscape.
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