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Due to the high accuracy and fast acquisition speed offered by airborne Light
Detection and Ranging (LiDAR) technology, airborne LiDAR point clouds have been
widely used in three-dimensional building model reconstruction. This paper presents a
novel approach to segment building roofs from point clouds using a Gaussian mixture
model in which buildings are represented by a mixture of Gaussians (MoG). The
Expectation-Maximization (EM) algorithm with the minimum description length
(MDL) principle is employed to obtain the optimal parameters of the MoG model for
separating building roofs. To separate complete planar building roofs, coplanar
Gaussian components are merged according to their distances to the corresponding
planes. In addition, shape analysis is utilized to remove nonplanar objects caused by
trees and irregular artifacts. Building models are obtained by combining segmented
planar roofs, topological relationships, and regularized building boundaries. Roof
intersection segments and points are derived by the segmentation results, and a raster-
based regularization method is employed to obtain geometrically correct and regular
building models. Experimental results suggest that the segmentation method is able to
separate building roofs with high accuracy while maintaining correct topological
relationships among roofs.

Keywords: LiDAR; roof segmentation; mixture of Gaussians; reconstruction;
boundary regularization

1. Introduction

As a major component of digital earth, three-dimensional (3D) building models have a
wide variety of applications in urban planning, virtual reality, change detection, and
emergency planning. Due to the fast acquisition speed and accurate 3D coordinates (i.e.
horizontal and vertical information), Light Detection and Ranging (LiDAR) point clouds
have been an important data source for high-quality 3D building model reconstruction
(Maas and Vosselman 1999; Gamba and Houshmand 2000; Wang 2013). The process of
reconstructing building models from airborne LiDAR point clouds mainly consists of
several subprocesses: building detection, roof segmentation, and model generation.
Building detection aims to extract building points from LiDAR point clouds, and many
classification methods in pattern recognition can be used to effectively separate building
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points from other points. The results of roof segmentation and model generation have a
direct impact on the accuracy of the building model. Effectively extracting building roofs
and obtaining accurate building models from LiDAR data are still challenging research
topics.

The main contribution of this paper is to introduce a novel segmentation method to
separate building roofs and propose an extensible building model generation method. The
roof segmentation method is able to separate building roofs while maintaining correct
topological information. In addition, an extensible method for building model generation
is presented by using rasterized point clouds and generic adjustments of building
boundary segments. The remaining contents of this paper are organized as follows.
Section 2 briefly reviews the related work. In Section 3, detailed principles of our
segmentation approach and implementation steps are presented. In Section 4, the model
generation method which identifies roof intersection segments and boundary segments is
described. The datasets and application details are illustrated in Section 5. Section 6
demonstrates experimental results of the proposed approach as well as a comparison
between the proposed method and the RANdom SAmple Consensus (RANSAC) method.
The main conclusions and future work are provided in Section 7.

2. Related work

To obtain final 3D polyhedral building models from LiDAR point clouds, key segments
and vertices of the roofs should be estimated using the building points. In terms of the
roof intersection segments, building roof segmentation methods are employed to divide
building roof points into planar clusters. The remaining segments, mainly building
boundaries, are estimated by boundary regularization methods which usually extract
segments from point clouds and align these segments based on a priori knowledge.

2.1. Roof segmentation

Generally, roof segmentation methods can be categorized into two groups: model-driven
methods and clustering methods. The model-driven methods iteratively search for
mathematical models (mainly planes) from point clouds. Hough transform and the
RANSAC algorithm are two widely used methods in roof segmentation. Vosselman and
Dijkman (2001), Oda et al. (2004), and Overby et al. (2004) used 3D Hough transform to
detect planes from point clouds. Rabbani and Van Den Heuvel (2005) extended 3D
Hough transform to extract other 3D geometric primitives like cylinders. The popular
RANSAC algorithm can effectively detect geometric primitives from data containing
more than 50% outliers (Fischler and Bolles 1981; Roth and Levine 1993). Ameri and
Fritsch (2000) and Brenner (2000) introduced the RANSAC algorithm to detect the roof
planes from airborne LiDAR data. Schnabel, Wahl, and Klein (2007) made improvements
on the performance of the RANSAC algorithm by utilizing an octree to organize point
clouds, thereby improving the probability of selecting points from certain geometric
primitives. Tarsha-Kurdi, Landes, and Grussenmeyer (2008) extended RANSAC to make
it applicable and efficient in extracting building roofs from LiDAR point clouds. Before
performing RANSAC, they performed resampling and used a low-pass filter to improve
data quality, and the evaluation function takes into account the standard deviation as well
as the number of points. Chen et al. (2012) introduced a localized sampling method based
on a grid structure to improve the probability of selecting points on the same geometric
shapes. However, RANSAC and Hough transform can only efficiently detect
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mathematical planes, and they usually fail to correctly identify neighboring roof points as
these points are assigned to planes based on the deviation of the points from the planes.

Clustering methods, such as region growing, fuzzy K-means, and mean shift, are also
employed to segment building roofs in building modeling from airborne LiDAR data.
Alharthy and Bethel (2004) and Verma, Kumar, and Hsu (2006) utilized the region
growing algorithm to detect planes in small neighborhoods. Sampath and Shan (2010)
presented an approach to reconstruct polyhedral building models with a potential-based
fuzzy K-means method. Fuzzy K-means is used to cluster normal vectors of point clouds
into several segments while the number of segments can be estimated by a potential-
based approach. By analyzing distance and connectivity of segments, parallel and
coplanar segments are separated, and then building vertices are determined by topological
analysis of planar segments. Dorninger and Pfeifer (2008) proposed a comprehensive
automated 3D building modeling framework from LiDAR point clouds. The mean shift
and region growing algorithms were used to segment building roof points into several
planar patches. Kim and Shan (2011) presented a novel approach for building roof
modeling, including roof plane segmentation and roof model reconstruction from LiDAR
data. Segmentation is performed by minimizing an energy function formulated as a
multiphase level set and meanwhile roof ridges and step edges are delineated.

In this paper, a novel approach for building roof segmentation is presented. Based on
the fact that the distribution of points on a planar patch can be described by the Gaussian
distribution, the mixture of Gaussians (MoG) is utilized to model a single building. The
MoG model has been used in airborne LiDAR data processing to classify raw point
clouds. Charaniya (2004) and Lodha, Fitzpatrick, and Helmbold (2007) both used
supervised classification with the Expectation-Maximization (EM) algorithm to classify
airborne LiDAR point clouds into roads, grasses, buildings, and trees based on several
features, such as aerial image intensity, height, and LiDAR return intensity. In contrast to
the previous methods introducing the MoG to LiDAR data classification, in this paper the
MoG model is specifically employed to depict the roof points of buildings and the
classification aims to extract planar roofs. Furthermore, instead of utilizing the features
derived from the data, only 3D coordinates are used, thereby improving accuracy in
feature calculation. Additionally, an unsupervised classification is carried out by the EM
algorithm combined with the minimum description length (MDL) principle. In compar-
ison with previous building roof segmentation methods, the proposed method utilizes a
stochastic model, i.e. the MoG model to represent building roofs.

2.2. Model generation

Due to the nonuniform sampling of the airborne LiDAR system, building boundary
points usually display as zigzags in detail. To obtain geometrically regular and correct
building boundaries, prior knowledge about building structure is usually utilized to adjust
long segments extracted from the boundary points. To maintain the regularity of building
models, dominant directions (Alharthy and Bethel 2002; Zhang, Yan, and Chen 2006;
Zhou and Neumann 2008) are introduced to align the segments. It is assumed that
buildings have two dominant directions which are perpendicular to each other and most
of the segments of the buildings are either parallel or perpendicular to the dominant
directions. These methods usually fail to model complex buildings with complex shapes
or those composed of several simple building models (e.g. gable roof, flat roof). Some
other approaches (Sampath and Shan 2004; Sester and Neidhart 2008) utilize least square
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estimation of the segments to adjust the segments. However, these methods require long
segments to be extracted before performing least square estimation and thus may obtain
unconvincing results for small buildings.

In this paper, to make the methods generic and applicable, generative adjustment is
adopted on the long segments obtained from rasterized point clouds using the RANSAC
method. Instead of using the original point clouds, the raster data are used to facilitate the
subsequent processing, mainly in parameter setting. In addition, this paper utilizes the
roof topology information to identify the location of the roof intersection points.

3. The MoG segmentation

A novel segmentation method is proposed to extract building roofs from building points
collected by airborne LiDAR data. The overall workflow of the segmentation method is
presented in Figure 1. The EM classification is performed to estimate the optimal
parameters (the number of Gaussian component K and the mean and covariance of every
Gaussian) of the MoG model. The best value of K is chosen according to the MDL
principle and then the corresponding classification results are refined by removing

Kmin≤k≤Kmax

Building Points

Estimating initial parameters of
MoG by K-means

Performing EM to find optimal
parameters

Computing MDL value

Selecting best MoG with the
minimum MDL value

Removing non planar objects and
merging coplanar segments

N

Y

k= k+1

Figure 1. Workflow of the segmentation method.
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nonplanar objects and merging coplanar clusters. Finally, complete building roofs are
extracted.

In Section 3.1, we demonstrate that, based on the fact that a 3D Gaussian distribution
can model points within real planar roofs, the MoG model is able to represent building
points. Then parameter estimation of the MoG model by the EM-MDL method and
refinements of the EM-MDL results are presented in Sections 3.2 and 3.3, respectively.

3.1. The MoG

The Gaussian distribution can describe a variety of probability distributions and is widely
used in natural sciences as a simple model for describing complex phenomena. The
Gaussian distribution defined over a d-dimensional vector x of continuous variables is
given by

N xjl;Rð Þ ¼ 1

2pð Þd=2
1

jRj1=2
exp � 1

2
x� lð ÞTR�1 x� lð Þ

� �
ð1Þ

where the d-dimensional vector µ is the mean and the d × d matrix Σ is the covariance. In
this paper, it is assumed that if x denotes 3D coordinates of a point, the 3D Gaussian
model can be used to describe the distribution of points within a planar patch.

Due to the limited elevation accuracy of airborne LiDAR data, collected points of
planar roofs do not exactly lie on a mathematical plane. Instead, they scatter within a thin
plate while their deviations to the plane conform to a Gaussian distribution centered at
zero. In fact, points in real planar roofs do not lie on a strict mathematical plane because
the measurements taken in building construction are not exact. In other words, a planar
roof surface is not so smooth that it can be represented by a disk and thus a 3D Gaussian
model. As we know, a typical 3D Gaussian distribution of points scatters in an ellipsoid
whose principal axes are given by the eigenvectors of the covariance matrix Σ (Alpaydin
2004). When these points are nearly located on a plane, the ellipsoid looks more like a
thin disk and the eigenvector corresponding to the minimum eigenvalue is parallel to the
normal vector of the plane. In short, since points of a planar patch acquired by airborne
LiDAR system usually scatter in a thin disk, the 3D Gaussian distribution is able to
model these points. Therefore, a single building containing more than one roof is
represented by an MoG model.

An MoG model is a linear superposition of Gaussian distribution in the follow-
ing form:

p xð Þ ¼
XK
k¼1

pkN xjlk ;Rkð Þ ð2Þ

where x is the observed data vector, K is the number of Gaussian components in the
MoG, N (µk, Σk) denotes the kth component, i.e. the kth Gaussian distribution of the
MoG, µ and x are the mean and covariance of the kth component, respectively, and πk is

the mixture coefficient. The mixture coefficients πk satisfy
PK
k
pk ¼ 1; 0 � pk � 1.

Mixture coefficients can be interpreted as ratios of points contained by the corresponding
Gaussian components. When representing building roof points, the number of Gaussian
components of the MoG model is usually larger than the true number of roofs even
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though each 3D Gaussian component is employed to model points within a planar patch.
The main reason is that points sampled from a Gaussian model usually locate near the
center µ in the feature space, i.e. in the Euclidean space in our method. As the Gaussian

model utilizes the squared Mahalanobis distance x � lð ÞTR�1 x � lð Þ to compute the
probability of a point belonging to the model, points far from the center possess large
values of Mahalanobis distance and thus small possibility to this model. Thus, a long
narrow roof is usually represented by two or three Gaussian models instead of one.
Therefore, in order to extract complete building roofs, after parameters of the MoG model
are estimated, coplanar components are merged according to the distance between the
components.

The key of roof segmentation is to assign roof points to their corresponding roofs.
When planar roof patches are represented by their corresponding Gaussian models, the
neighboring roof points can be separated into different components. The probability of a
point belonging to a Gaussian component depends on the squared Mahalanobis distance
which takes both the feature of the point and the covariance matrix of the model into
consideration. Even though the neighboring roof points are close in the Euclidean space
to the two Gaussian components, the probabilities of the points belonging to the two
components are different. Since discriminative building roofs usually possess different
aspects and thus different covariance matrixes, neighboring roof points can be assigned to
different Gaussian components. Based on the fact that neighboring roof points are
correctly classified, each component of the MoG model denotes a complete roof or a roof
patch. Therefore, by merging coplanar components, complete building roofs are
separated.

3.2. Parameter estimation of the MoG model

To obtain the optimal parameters of the MoG model, the general EM algorithm
(Dempster, Laird, and Rubin 1977) is often employed to effectively obtain the optimal
estimation even though there is no guarantee to achieve the global optimal results. Prior
to performing the EM algorithm, the initial values of the parameters of the MoG model
should be assigned. The K-means algorithm (Lloyd 1982), which converges more
quickly, is usually utilized to find the suitable initial values of the EM algorithm (Bishop
2006). However, by performing K-means initialization, it is assumed that the number of
clusters should be given beforehand. In order to perform unsupervised classification,
some extended techniques should be employed to determine K (the number of Gaussian
components), for example the MDL principle (Rissanen 1983).

In order to automatically identify the number of Gaussian components, the MDL
principle is utilized in our method in the parameter estimation of the MoG model. The
MDL principle is a trade-off between the likelihood of the model to the data and the
complexity of the model itself (Grünwald 2007). The MDL principle selects the number
of components that minimizes the following formula:

MDL ¼ �L þ 1

2
m logN ð3Þ

where m ¼ K � 1ð Þ þ K Dþ 1
2D Dþ 1ð Þ� �

, L is the log-likelihood of the EM algorithm,
K is the number of components of the MoG model, and D is the dimension of the
features. The second part, 1

2m logN , of Equation (3) is determined by the complexity of
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the MoG, i.e. the number of components, K and the data, i.e. the dimension and the
number of data.

By changing the number of components K in a user-defined range[Kmin, Kmax],
various MDL values can be obtained. The optimal number of components corresponding
to the minimum MDL value is then determined and chosen to be the number of planar
patches extracted by the EM algorithm.

3.3. Refinements of the EM-MDL results

After the EM-MDL classification is performed, further refinements, including removing
nonplanar objects and merging coplanar patches, are employed to extract complete
building roofs.

Since the EM-MoG methods do not discard any points, nonplanar objects, such as
drainage pipelines, chimneys, small irregular objects, and trees, are not removed. In order
to identify those nonplanar objects, shape analysis based on their planarity is performed.
The planarity is defined as the ratio of the minimum eigenvalue of the covariance matrix
Σ to the sum of all eigenvalues of Σ. The Gaussian models corresponding to the irregular
artifacts are quite different from planar roofs as points of these objects usually scatter in
an ellipsoid instead of a thin disk. For a Gaussian model representing a planar patch, the
minimum eigenvalue is nearly zero and its corresponding eigenvector is parallel to the
normal vector of the patch. Thus, nonplanar objects can be identified by its planarity.
Shape analysis is employed to detect and remove nonplanar objects before merging
coplanar patches.

In addition, as illustrated in Section 3.1, one roof may be modeled by more than one
Gaussian component. Therefore coplanar clusters should be grouped into one cluster in
order to extract complete roofs. Coplanar clusters are identified by their normal vectors
and distances. The distance between two point sets is defined as (Sampath and Shan
2010)

DP;Q ¼ min d pi; qj
� �� � 8pi 2 P; 8qj 2 Q ð4Þ

where P, Q denote cluster P and cluster Q, pi and qj are any point belonging to cluster
P and cluster Q, respectively, and d (pi, qj) is the Euclidean distance between pi and qj.
When two planar patches present a small distance and their normal vectors are parallel to
each other, they will be merged into one planar patch.

In short, once initial classification results are obtained, nonplanar clusters are removed
by their planarity and then coplanar clusters are merged. Finally, complete building roofs
are extracted.

4. Model generation

3D building models constructed by airborne LiDAR data are polyhedral models whose
walls are obtained by extending the building boundaries to the ground. Therefore, to
obtain 3D building models, key segments and vertices of the roofs should be acquired
from the point clouds. Considering the structure of building models, those segments and
vertices can be categorized into two types, i.e. roof intersection segments and vertices,
and building boundary segments and vertices. These two types should be processed
respectively.

International Journal of Digital Earth 7
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4.1. Roof intersection segments and vertices

To find roof intersection segments, the roof intersection lines are first determined based
on the plane parameters of the segmented roofs and then terminals of the roof intersection
segments are estimated based on points on the intersection lines. However, due to the
disadvantage of airborne LiDAR systems in measuring linear objects, those segments are
usually shorter than the true ones. Therefore, the roof intersection vertices are difficult to
identify. In order to correctly find the roof intersection vertices, the undirected graph
model of the roofs is utilized.

In the graph, each roof denotes a node and two roofs are connected to each other if
there exists a segment between them. For example, the building in Figure 2(a) contains
four planar roofs and one roof intersection point. Based on the roof intersection segments
in Figure 2(a), the corresponding graph is constructed as shown in Figure 2(b). It can be
seen that the nodes of the three roofs which determine the roof intersection point form a
circle. Therefore, after the graph is constructed, minimal closed circles in the graph are
searched and a roof intersection point can be determined by one closed circle. A minimal
closed circle is composed of at least three nodes (planes) and therefore a unique point
could be identified by intersecting those planes. The graph is constructed based on the
topological information and thus the estimated position of the roof intersection point is
correct.

In addition to finding the roof intersection points, the undirected graph can also be
used to separate single buildings in the building modeling process. When obtaining
regular building boundaries, it is preferred that one single building whose roofs are
connected is processed rather than several buildings. However, when automatically
separating buildings, the connective component analysis is usually utilized and
neighboring buildings (usually more than one single building) are likely to be clustered
in a group. By searching the connected component of the undirected graph reflecting the
roof topological relationship, single buildings can be separated, which will facilitate the
building boundary regularization process.

By using the undirected graph, some special roof structures (for example dormers)
can also be identified. In most cases, a dormer has only one roof and thus it is not in a
loop in the undirected graph. Moreover, the dormer usually has a smaller size than the

(a) (b) (c) 

Figure 2. Identification of roof intersection point from the undirected graph: (a) building points and
roof intersection segments, (b) the undirected graph (each node denotes a planar roof), and (c) roof
intersection point.
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roof and if projected to XY plane (horizontal plane) its centroid is within the roof. Thus
dormers can be identified and reconstructed by using the undirected graph.

4.2. Building boundary segments and vertices

To obtain reasonable and usable models, regular building boundary segments should be
obtained from the point clouds. Some methods adjusted the segments according to the
domain directions of the buildings. However, these methods do not apply to complex
building models, for example, buildings composed of several simple building models. In
addition, as assumptions and prior knowledge are used, these methods usually require
more parameters. These two problems should be taken into account in building boundary
regularization.

In this paper, the building points are first rasterized by the cell size c ¼ ffiffiffiffiffiffiffiffi
1=p

p
(p refers to the average point density of the point clouds). This cell size can maintain
details of the point clouds as well as the information of edges and is widely adopted when
rasterizing point clouds. Based on the rasterized data, building boundary points are
extracted by a 2D alpha shape algorithm which proves to be efficient for both convex and
concave building shapes. The alpha value of the alpha shape algorithm is set as twice the
cell size. Then, the RANSAC algorithm is performed to find long segments and the
corresponding parameters, for example the distance threshold of a point to the line, can
also be set according to the cell size.

Once long segments are obtained, the segments are then adjusted by aligning these
segments as parallel or orthogonal to successive segments as possible. To avoid a priori
knowledge as much as possible, the parallel mergence and orthogonal adjustments are
used in this paper. In the parallel mergence process, if the angle of two successive
segments is smaller than a certain threshold (15° in this paper), these two segments are
combined into one. In the orthogonal adjustment, the segment connecting two
neighboring parallel or orthogonal segments obtained by the RANSAC method may be
adjusted according to its length.

After regularized boundaries are obtained, by combining the roof intersection
segments and building boundaries, the 3D building roof models are derived. Finally, by
extending the building boundaries to the ground surface, 3D polyhedral building models
are acquired.

5. Experiments

5.1. Dataset

In this paper, the Vaihingen dataset provided by the German Society for Photogrammetry,
Remote Sensing and Geoinformation (DGPF; Cramer 2010) is employed to provide both
quantitative and qualitative evaluation of our method. The DGPF dataset is acquired on
21 August 2008 by Leica Geosystems using a Leica ALS50 system with 45° field of view
and a mean flying height above ground of 500 m. The mean point density in one strip is
four points per square meter. The data of Area 3 which is a purely residential area with
small detached houses are segmented by our method and furthermore the 3D building
models are also reconstructed to provide quantitative evaluation of the segmentation
method and the model generation method.
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5.2. Experiments

As our segmentation approach aims to extract roofs from building points, the progress
Triangulated Irregular Network (TIN) filter (Axelsson 2000) is firstly carried out to
separate ground points and then building points are obtained by a region growing
algorithm. After the building points are extracted, the MoG segmentation method,
including the EM classification, nonplanar objects removal, and coplanar patches
mergence, is performed to separate planar roofs.

The most important parameter of our method is the number of Gaussian components
when performing the EM algorithm. For most of the buildings which possess a sufficient
number of points in the dataset, the minimum number of Gaussian components Kmin is set
as four and the maximum Kmax is nine since the maximum number of roofs of buildings
is five. For the buildings consisting of only one roof, Kmin is two while Kmax is four. The
angle threshold of coplanar planes is 10° and the planarity of a planar roof should be
smaller than 0.001.

Once the building roofs are segmented, 3D building models are reconstructed by
combining regularized building outlines and roof intersections.

6. Results and discussion

Both quantitative and qualitative evaluation methods are employed to validate the
performance of the segmentation method and the model generation on the real dataset.
First, based on the evaluation results of the International Society for Photogrammetry and
Remote Sensing (ISPRS) Working Group III/4, the correctness of the segmentation
results is evaluated. In addition, the plane fitting quality of roofs, i.e. the mean and
standard deviation of distance of the points to the corresponding roofs, indicates whether
the segmentation results obtain planar objects whose mean and standard deviation values
are small and within tolerance. Second, the number of roof intersections is also counted to
assess the performance of the segmentation methods for the neighboring roof points. The
segmentation results of both our method and the popular RANSAC method are evaluated
and compared. Finally, the accuracy of the final building models is discussed.

In terms of the segmentation correctness, as demonstrated in Table 1, the correctness
of the processed buildings is 100%, which demonstrates that all detected roofs are
correctly separated. Moreover, by comparing the yellow pixels in Figure 3(b) with
Figure 3(a), it can be seen that for the detected buildings, our segmentation method
obtains correct roof segmentation results and no roofs are misdetected or neglected. This
can also be concluded from the fact as shown in Figure 3(b) in which the red blocks
represent falsely detected roofs that only exist in the building boundaries. It should be
noted that for the blue blocks referring to misdetected roofs in Figure 3(b), the
corresponding area in Figure 3(a) does not contain sufficient points because some points

Table 1. Vaihingen results: 3D building reconstruction in Area 3.

Compl. roof [%] Corr. roof [%] Compl. roof 10 [%] Corr. roof 10 [%]

73.2 100 83.1 100

Note: This table is shown on the I ISPRS Working Group III/4 website (http://www2.isprs.org/commissions/
comm3/wg4/results/a3_recon.html). Compl. roof [%] shows the completeness of detected roof planes compared
to the reference data while Corr. roof [%] displays the correctness of detected roof planes. Compl. roof 10 [%]
and Corr. roof 10 [%] exhibit results of large roof planes whose area is larger than 10 m2.

10 Y. Xiao et al.
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are missing during data collection and some points are classified as nonbuilding points
when removing ground points and detecting building points.

To fully inspect the segmentation results, the plane fitting quality is also computed.
As shown in Figure 4, the plane fitting quality of the segmentation results is high, as the
average of mean distance of the points to the corresponding roofs is about 0.02 m and the
values of the corresponding standard deviation are nearly zero. High plane fitting quality
indicates that the MoG segmentation method is able to separate nearly planar objects.
However, several buildings display high mean values larger than 0.05 m while the
maximum is 0.147 m, and high values of the standard deviation which are larger than
0.005 m and the maximum is 0.019 m. These buildings are small and possess fewer
points and therefore some points with larger deviations to the plane can lead to higher
overall mean and standard deviation values.

Effective segmentation methods should obtain correct numbers of roof intersections
which ensure the correctness and accuracy of the final models. To further validate the

Figure 3. Evaluation of reconstructed models: (a) detected building points and (b) evaluation of the
reconstructed models on a per-pixel level.
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Figure 4. Plane fitting quality: (a) the mean distance (in meters) of the points to the corresponding
roofs and (b) the standard deviation of the distance of points to the corresponding roofs.
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proposed segmentation method as to whether the segmentation results are able to obtain
the key segments and thus maintain accurate topological relationships, roof intersection
lines of buildings should also be inspected. If the segmentation method successfully
extracts planar roofs, intersection lines of roofs containing sufficient points will be
identified by intersecting the roofs. In our experiment, the distance threshold of a point
belonging to an intersection line is set as 0.4 m and lines containing less than two points
from either of the two planes are ignored.

Roof intersections of the 27 gable buildings in the dataset are computed and the
number of lines is also estimated and compared to the true number of roof intersections.
Experimental results in Figure 5 of the roof intersections from the segmentation results
demonstrate that the proposed method nearly obtains the correct number of roof
intersections. The only discrepancy occurs as building 11 contains a small dormer and
the roof intersection segment does not contain sufficient points and thus is not detected.
The MoG method utilizes the Mahalanobis distance to separate neighboring roof points.
Due to the data covariance matrix, minor deviations in elevation could lead to large
possibilities of points belonging to a cluster. Therefore, the neighboring roofs are
successfully separated and the roof intersection segments are correctly identified.

On the contrary, the RANSAC algorithm acquires fewer intersections as shown in
Figure 5. The RANSAC algorithm usually fails to separate roofs when neighboring roofs
possess similar slope as the algorithm assigns a point to a candidate shape according to
the deviation of the point to the shape and the normal vector difference. Thus in the
experiments, some dormers are not correctly separated because they have a small angle
with the roof. For example, for the building in Figure 6(a), RANSAC only detects two
roofs as the dormer and the roofs are segmented as one class. Therefore, the plane
equation of the new cluster is quite different from the real roof, and no intersection is
detected as shown in Figure 6(a). Also, RANSAC usually falsely classifies the
neighboring roof points, and the roof intersection location is not so accurate. These are
the reasons that the RANSAC algorithm only finds one roof intersection instead of three
when segmenting the building in Figure 6(b). Even though the two dormers are correctly
extracted, the intersections are not identified because some neighboring roof points are
assigned to the roofs and thus there are few or no points of the dormers on the
corresponding intersections.
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Figure 5. Number of roof intersections.

12 Y. Xiao et al.

D
ow

nl
oa

de
d 

by
 [

C
en

te
r 

fo
r 

E
ar

th
 O

bs
er

va
tio

n 
an

d 
D

ig
ita

l E
ar

th
 ]

 a
t 1

8:
40

 2
7 

O
ct

ob
er

 2
01

4 



Apart from the evaluation of the segmentation results, quantitative evaluations of the
building models are also provided by the ISPRS Working Group III/4 as shown in
Table 2. The fact that the planimetric accuracy of the models is high (0.8 m) demonstrates
that our boundary regularization method is able to obtain correct boundaries. Although to
some extent rasterization of the point clouds can lead to data loss, reconstructed
boundaries still have a high accuracy because the adjustment of the boundary segments
may compensate this loss and thus the obtained building boundaries have a high
accuracy. The vertical accuracy of building models is mainly determined by the roof
intersection points. Our models have a high vertical accuracy (0.1 m) which proves that
by using the graph the roof intersection points are correctly identified.

7. Conclusions and future work

To obtain accurate 3D building models from airborne LiDAR data, this paper presents a
novel segmentation method of building roofs and a generic model generation method. By
using the MoG model to depict building roof points, this segmentation method
successfully separates roof points into several planar segments and identifies intersection
lines of roofs. To obtain regular building models, rasterized data are utilized to facilitate
the process and maintain its applicability. In addition, a graph of the roof topology is
introduced to identify roof intersection points. Finally, 3D polyhedral building models are
obtained.

Figure 6. Roof intersection results of two buildings: (a) roof intersections (black lines) of building
10 and (b) roof intersections (black lines) of building 8.
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The experimental results of the study area show that the proposed segmentation is
able to extract planar roofs and obtain correct roof intersection segments. Quantitative
evaluation of the building models demonstrates that the model generation method has a
high accuracy. In future, we will focus on applying the segmentation and model
generation method to more data.
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